
RIFS: Run-Time Invariant Function Specialization
Saba Jamilan

University of California at Santa Cruz

Santa Cruz, USA

sjamilan@ucsc.edu

Snehasish Kumar

Google

Mountain View, USA

sneaky@google.com

Heiner Litz

University of California at Santa Cruz

Santa Cruz, USA

hlitz@ucsc.edu

Abstract

Compilers apply optimizations such as function specializa-

tion and constant propagation to eliminate redundant work

at compile time. However, because compilers must prove that

values are constant, many profitable optimization opportu-

nities remain unrealized. In this paper, we propose run-time

invariant function specialization (RIFS), a profile-guided com-

piler technique that specializes functions based on runtime

invariant call-site-specific argument values. RIFS introduces
a novel value-profiling LLVM pass to identify runtime invari-

ant arguments, even though they cannot be proven constant

statically. A subsequent LLVM transformation pass generates

specialized function variants tailored to these value profiles.

To efficiently select among potentially thousands of special-

ization candidates, we develop a predictive cost model that

estimates the performance benefit of each candidate prior

to code generation. We integrate our passes seamlessly into

the existing PGO-enabled LLVM toolchain. We evaluate RIFS
across 11 real-world applications, demonstrating substantial

improvements over state-of-the-art optimization techniques.

RIFS achieves an average speedup of 6.3% and an instruction

reduction of 2.5% over the LLVM -O3+PGO baseline.

CCS Concepts: • Software and its engineering→ Source
code generation.

Keywords: Compiler Analysis, Function Specialization

ACM Reference Format:

Saba Jamilan, Snehasish Kumar, and Heiner Litz. 2026. RIFS: Run-

Time Invariant Function Specialization. In Proceedings of the 35th
ACM SIGPLAN International Conference on Compiler Construction
(CC ’26), January 31 – February 1, 2026, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3771775.
3786274

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CC ’26, Sydney, NSW, Australia
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2274-5/2026/01

https://doi.org/10.1145/3771775.3786274

1 Introduction

The demise of Dennard Scaling [25] and the deceleration of

Moore’s Law [49] has caused a slow down of general-purpose

processor performance improvements. As emerging datacen-

ter workloads and applications in artificial intelligence and

mobile demonstrate an insatiable demand for higher perfor-

mance, optimizations across the compute stack become a

necessity. Enhancing compiler techniques is an attractive

solution to this challenge as it does not require application

or hardware changes while improving both performance and

energy consumption. In particular, compilers leverage code

transformation and optimization techniques such as constant

propagation [41, 56] and function specialization [10, 14] to

reduce the instruction count of applications, improving effi-

ciency. We observe that existing techniques miss substantial

performance opportunities by neglecting to optimize run-

time value invariant function calls. In particular, we find that

applications frequently execute functions with the same ar-

guments, which can be leveraged for function specialization.

Existing compiler techniques miss these opportunities, as

value invariant arguments are unknown at compile time.

There exists a large body of work on compiler optimiza-

tions, including function inlining [24], function specializa-

tion [10, 14], constant value propagation [41, 56], and many

others [9, 16, 18, 22, 29, 31, 34, 45, 48]. Most of these tech-

niques have been successfully implemented by compiler

suites such as LLVM [37] and GCC [1], however, they all rely

on compile-time information. For instance, to determine the

benefit of function inlining, compilers traditionally consider

static information, such as the size of the function, limit-

ing the potential optimization opportunities. To address this

challenge, profile-guided optimization (PGO) [39, 44] tech-

niques have been proposed, leveraging runtime information

to expose additional optimization opportunities. For instance,

PGO can monitor the dynamic execution frequency of each

function, improving the effectiveness of function inlining.

Research has shown that fully automated PGO techniques

such as AutoFDO [20] can improve performance by up to 30%.

Link-time Optimization (LTO) [2, 17, 32], BOLT [42], and

Propeller [51] are profiling-based tools that enable additional

optimizations such as function and basic-block reordering,

further optimizing instruction cache performance.

40

https://orcid.org/0000-0003-2259-6426
https://orcid.org/0000-0002-6871-8962
https://orcid.org/0000-0001-5181-9639
https://doi.org/10.1145/3771775.3786274
https://doi.org/10.1145/3771775.3786274
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3771775.3786274
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

Figure 1. Percentage of function calls with at least one value

invariant argument with value predictibility of 100% com-

piled with LLVM -O3 and PGO
.

Ali [8] and Perianayagam[43] have proposed runtime tech-

niques to specialize functions, however, these techniques lack

generalizability and have not been implemented in any com-

piler framework. Ali proposes to instrument hot functions

withmonitors, allowing the execution of specialized function

calls based on specific arguments. The proposed technique

utilizes fat-binaries supporting limited machine-specific opti-

mizations [55] while introducing substantial code-bloat. The

proposed monitors introduce large lookup tables to deter-

mine the target function at runtime while relying on simple

heuristics to determine function optimization candidates.

Perianayagam et al. [43] proposes a function specialization

technique based on PLTO binary rewriting [50] to optimize

system calls within the Linux kernel. The proposed technique

is limited to specific functions within the Linux kernel. We

observe significant opportunties to improve over prior work.

First, we find that to improve coverage, a much more exhaus-

tive analysis is required to determine function specialization

candidates. Second, we observe that choosing the right opti-

mization candidate is non-trivial as many seemingly good

candidates cause performance regression. To address these

challenges we propose a new profiling system leveraging

LLVM instrumentation to obtain comprehensive profiling

data enabling high coverage to generate thousands of op-

timization candidates per application. We then introduce a

novel cost-model based on low-overhead machine learning

models to select the right function specialization candidates

for a given application. Our cost model predicts the perfor-

mance gain provided by a specific optimization including its

effect on downstream passes in the LLVM pipeline and se-

lects configurations that outweigh the overheads introduced

by function cloning.

To motivate our work, we devise an experiment to determine

the opportunities provided by optimizing invariant function

calls, i.e., functions that are always called with the same pa-

rameter values at runtime. We analyze a set of applications

from the SPEC CPU2017(rate) Integer and Floating points

benchmarks [4], Parsec-3.0 [59], and Rodinia Benchmark

Suite 3.1 [19], compiled with LLVM and optimization level

"-O3" to determine invariant arguments for all function calls.

In particular, we measure the ratio of function calls for each

call site, in which at least one function parameter is always

the same. As Figure 1 shows, for some applications such

as 531.deepsjeng_r, over 90% of all function calls utilize the

same argument for a given call site. Such functions should

be amenable for specialization as the generated code can be

optimized for a particular constant argument value. Further-

more, we analyze whether existing profile-guided techniques

such as PGO can already optimize and eliminate such value-

invariant function calls. As can be seen, the opposite is the

case, as for some applications such as 531.deepsjeng_r and

freqmine, PGO further increases the ratio of invariant func-

tions. This is because PGO inlines additional function calls,

leading to a higher ratio of unoptimized value-invariant calls.

Although applications like bfs, hotspot3D, and kmeans have

a low percentage of value-invariant function calls compared

to their total number of function calls, specializing even

this small subset of function calls can yield to considerable

performance gains and instructions reductions.

To exploit the existing function specialization opportuni-

ties explored above, we propose run-time invariant function

specialization (RIFS), an application-independent, generic

technique implemented as an LLVM-IR level pass that can be

seamlessly integrated into existing profile-guided optimiza-

tion pipelines. Our technique introduces an LLVM-based

function-level value profiling pass, operating at the inter-

mediate representation (LLVM IR) [37] layer, that captures

the values passed to function parameters at runtime dur-

ing a profile run. RIFS then analyses the collected profiles

to identify specialization candidates and generates a list of

functions that should be specialized. This list is processed

by a new LLVM transformation pass emitting specialized

function variants for each candidate and the necessary safety

code path to ensure the correctness of the transformation.

Our pass leverages existing constant propagation, inlining,

and dead code elimination passes to maximize its utility.

To avoid performance regression, the speedup provided by

function specialization needs to be weighed against the over-

heads caused by code replication (function cloning) and ad-

ditional checks to ensure correctness. We introduce a profile-

guided data-driven machine learning model that predicts the

performance benefits of specializing individual function can-

didates, as well as the overall effect of enabling specialization

for a set of candidates. The model is trained on thousands

of samples and leverages static program features extracted

from the program IR before and after function specializa-

tion as well as dynamic profiling information. These features

include control flow information such as basic block sizes

and function execution frequencies, the opcodes (and types)

eliminated by our pass, and the data dependencies of elimi-

nated function arguments. We show that our new invariant

41

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

function argument profiling and cost model techniques out-

perform prior work Ali [8] by 6.625 times, Perianayagam[43]

by 4.81 times, and 6.3% over LLVM leveraging O3 and PGO.

Furthermore, RIFS reduces the total number of dynamically

executed instructions by 2.5% over LLVM leveraging O3 and

PGO improving power efficiency. In summary, this work

provides the following contributions:

• A novel technique to improve performance via value in-

variant function specialization

• An LLVM function-level profiling pass to capture value

invariant behavior of function call parameters

• A new LLVM function specialization pass for automatic

and safe code transformations

• An analysis showing that existing techniques such as

Ali [8], O3, and PGO are insufficient for exploiting value

invariant functions

• A data-driven supervised learning-based cost model, lever-

aging static and dynamic profiling data, for identifying the

best function specialization candidates

• Substantial improvements in execution time (up to 18.5%)

and reduction in dynamically executed instructions (up

to 22.8%) over PGO across applications from SPEC2017,

PARSEC, and Rodinia Benchmark Suite 3.1 [19].

2 Background

Compilers apply many optimizations to generate more effi-

cient executables. This section discusses static and profile-

guided optimization techniques most relevant to RIFS.

2.1 Static Compilation Optimization Techniques

Constant Propagation. Constant Propagation [56] respec-

tively constant folding [36] is a compiler optimization tech-

nique that simplifies constant expressions at compile time.

For instance, the expression int pi = 22/7; can be simplified

at compile time to int pi = 3;, eliminating costly division

instructions from the binary. This optimization can be ap-

plied transitively by propagating pi to other code sequences

that consume it. The technique is particularly useful for con-

ditional branches computed solely on constant values, in

which entire code branches can be eliminated.

Function Inlining. Function inlining [24] is a compiler tech-

nique that replaces the call-site (caller) of a function with the

function body (callee) itself. As a result, function call over-

head, including the call/jump and return instructions as

well as the register spilling code to save and restore registers

to the stack, are eliminated. While reducing the instruction

count and, in particular, branches from the code is beneficial

for performance, function inlining increases the static code

footprint, which may increase instruction cache misses. As

a result, function inlining is generally only applied to small

functions.

Function Specialization. Function specialization [10, 14] is

an optimization technique that generates multiple optimized

implementations of a given function based on static func-

tion parameters. For instance, a function frequently called

with the same parameter value, such as malloc(k) where

k is a constant, can be specialized into a version that only

handles that particular parameter. This technique effectively

transforms function parameters into constants, enabling ad-

ditional opportunities for constant propagation.

2.2 Profile-Guided Optimization Techniques

All techniques above perform optimizations based on static

compile-time knowledge. In particular, the compiler must

"prove" that a given transformation is safe and does not

change the program’s behavior. Unfortunately, static behav-

ior is often unknown at compile-time motivating profile-

guided techniques.

Profile-Guided Optimizations (PGO). Profile-guided op-

timizations such as AutoFDO [20] can improve the perfor-

mance of applications by increasing the effectiveness of op-

timizations such as function inlining, basic block reordering,

and register allocation. Therefore, PGO executes compiled

binaries and collects profiling data. PGO then recompiles the

program again using the obtained profile, enabling additional

optimization opportunities. For instance, it may reverse the

branch direction for inversely biased branches.

Post Link Optimizations (PLO). PLO is applied after link

time to enable additional across-file and across-library op-

timizations. LLVM BOLT [42] and Propeller [51] are two

well-known tools for performing post-link optimizations

supported by the Clang compiler. The optimized binary by

RIFS over LLVM O3 and PGO pipelines can then use llvm-
bolt [7] to utilize the collected sampling data with Intel’s

Processor Event-Based Sampling profiler [47] for further

optimizations.

2.3 LLVM Compiler Infrastructure

LLVM [37] is a collection of modular and reusable compiler

and toolchain technologies. LLVM’s Clang compiler converts

source code to an Intermediate Representation (IR) on which

all further code transformations are applied. Compiled LLVM

IR code is organized into functions (matching those on the

source code level), which contain a collection of basic blocks

(BBL), defined as a sequence of sequential instructions that

end with a branch or other control flow changing operation.

Optimizations, referred to as Transform Passes, are applied
on an input IR, generating a new output IR. After applying

42

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

various passes, the back-end of LLVM generates the machine

code, such as x86 instructions, from the optimized LLVM IR.

3 Analysis

In this section, we perform an analysis to determine the per-

formance opportunities provided by value-invariant func-

tion specialization. We first explore the existence of value-

invariant function call arguments in applications; then, we

show that utilizing constant value propagation can reduce

the instruction count of applications.

3.1 Are Value-Invariant Arguments Common?

To study whether value-invariant function arguments fre-

quently exist in applications, we develop an LLVM function-

level profiling pass that tracks every function call and its

arguments. The tool instruments dynamic function calls,

tracking the function itself (callee), the call site (caller), and

the arguments provided to the call. We will provide a more

detailed description of the tool in Section 4. We classify the

value-invariant behavior of function arguments into two

main groups: fully-invariant functions have at least one ar-

gument that is always identical for a given call site, whereas

semi-invariant functions have at least one argument that

reflects the same value at least 10% of the time. To perform

our analysis, we compile all workloads with LLVM’s opti-

mization level "-O3" and PGO enabled. Table 1 illustrates

the number of call sites and dynamically executed function

calls with fully and semi-invariant arguments. The Function
column lists the number of all static functions defined in the

source code of an application that are executed at least once.

The Call Sites column shows the number of static source-

code locations that call a function, and the Dynamic Calls
column shows the total number of dynamically executed call

instructions. The following columns shows the total number

of fully and semi-invariant integer-typed function-call pa-

rameters across all call sites in the application. We consider

these parameters as potential optimization candidates. For
example, the same function and argument (index 1) may be

fully invariant at call site A but only semi-invariant at call

site B; we count both instances as optimization candidates.

While for some applications, including 502.gcc_r, the number

of optimization candidates are large around 907, there exist

applications such as Motion Estimation and kmeans that the

number is small, but these functions can still be worthwhile

to optimize as they are either frequently executed (Motion

Estimation) or contain a large number of instructions that

can possibly be eliminated (kmeans). This shows that even

after applying profile-guided optimizations, there still exists

a considerable number of function calls that utilize the same

arguments for a given call site. Based on these insights, we

Figure 2. Data type of fully value invariant function call

parameters in real applications.

will now explore whether specializing such value-invariant

function calls can be beneficial for performance.

3.2 Which Argument Types to Optimize?

We now analyze the common data types of value invariant

arguments as they determine the optimization opportunities

of function specialization. There exist three main data types

including (1) integer data, (2) floating point data, and (3) in-

teger pointer. While many opportunities exist for compilers

to optimize integer data (we will show several examples in

Section 3.3), invariant floating point variables and pointers

provide fewer optimization opportunities. For instance, we

found that LLVM does not apply constant propagation for in-

variant floating point values evenwhen utilizing -ffast-math.

Figure 2 analyzes the data type for each of the invariant ar-

guments profiled in Section 3.1. While some applications,

such as 531.deepsjeng_r, exhibit frequent invariant floating-

point and pointer arguments, integers are the most common

invariant data type.

3.3 Does Function Specialization Offer Optimization
Opportunities?

To demonstrate the performance improvement opportunities

enabled by value invariant arguments, Listing 1 shows a can-

didate function from the swaptions benchmark. Here, the iN

argument of the HJM_SimPath_Forward_Blocking function

is fully invariant for the call site in line 5. Assuming iN to be

constant enables several optimization opportunities. First,

the division operation dYears/iN (line 12) can be replaced for

a shift operation if iN is known to be a power of two. Second,

the calculation of iN-BLOCKSIZE-1 (line 14/15/23/24) can be

performed at compile-time as all terms are constant. Third,

the loop for (j=1;j<=iN-1;++j) (line 19) can be perfectly

unrolled, and the branch can be eliminated if iN is known

in advance. To enable compilers to perform these optimiza-

tions automatically, we can generate a specialized version

43

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Table 1. Value Profiling results for function calls with integer type parameters after enabling -O3 + PGO

Application #Function #Call Sites #Dynamic #Dynamic #Fully Invariant #Semi Invariant
Calls (Fully & Semi) Invariant Arguments Arguments

Calls (IR-Level) (IR-Level)
500.perlbench_r 1878 3553 6237660225 681937046 349 455

502.gcc_r 6005 23745 706076011 105630518 2610 3048

505.mcf_r 36 82 55307358 54633708 11 19

525.x264_r 490 1500 185276674 137304959 449 960

531.deepsjeng_r 96 222 202015158 201993118 106 264

538.imagick_r 1948 1107 24028576 23865137 15 35

swaptions 24 53 474601748 3000061 8 8

freqmine 42 114 116915328 52962897 6 10

hotspot 7 28 8408632 20002 6 6

hotspot3D 8 31 11681808 5 17 17

bfs 3 37 7200026 1 1 1

kmeans 5 45 264000103 2 7 7

1 int HJM_Swaption_Blocking(FTYPE *pdSwaptionPrice, FTYPE dStrike, int iN, int

iFactors , FTYPE dYears, FTYPE *pdYield, ..) {

2 ...

3 // Simulations begin:

4 for (l=0; l<= lTrials -1 ; l+=BLOCKSIZE) {

5 iSuccess = HJM_SimPath_Forward_Blocking(ppdHJMPath,iN, iFactors, dYears,

pdForward, pdTotalDrift ,ppdFactors , &iRndSeed, BLOCKSIZE); /∗ GC: 51% of

the time goes here ∗/

6 if (iSuccess != 1)

7 return iSuccess ;

8 ...

9 }

10 int HJM_SimPath_Forward_Blocking(FTYPE **ppdHJMPath,

11 int iN , int iFactors , FTYPE dYears, FTYPE *pdForward, ...) {

12 ddelt = (FTYPE)(dYears/iN) ;

13 sqrt_ddelt = sqrt (ddelt) ;

14 pdZ = dmatrix(0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

15 randZ = dmatrix(0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

16 // sequentially generating random numbers

17 for (int b=0; b<BLOCKSIZE; b++){

18 for (int s=0; s<1; s++)

19 for (j=1; j<=iN-1;++j)

20 for (l=0; l<=iFactors -1 ;++l)

21 randZ[l][BLOCKSIZE*j + b + s] = RanUnif(lRndSeed);

22 ...

23 free_dmatrix (pdZ, 0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

24 free_dmatrix (randZ, 0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

25 ...

26 }

Listing 1. An example function from swaptions in which

the IN argument is always 11 for one call site.

of HJM_SimPath_Forward_Blocking that the iN argument is

defined as a local constant variable iN = 11; in its function

body. We then add additional runtime checks in the call site

to ensure the transformation is safe. Existing compiler passes

can then apply existing optimizations, including constant

propagation, to facilitate the techniques above.

4 Design of RIFS

Our analysis showed that applications exhibit significant

invariant function calls, which can be exploited through

function specialization. We now provide a detailed expla-

nation of RIFS, including its value-profiling mechanism, its

cost model to identify profitable function-specialization can-

didates based on static and dynamic analysis. We then de-

scribe the LLVM transformation pass that inserts specialized

functions for the candidates selected by the cost model, and

finally discuss how RIFS integrates into existing compilation

pipelines.

4.1 Profile Collection

Identifying value-invariant arguments and turning them to

constant values enable additional opportunities for optimiza-

tion passes such as constant propagation, dead-code elimi-

nation, and inlining, resulting in instruction and execution

time reduction. Our pass instruments each IR-level function

to record its argument values and call site. By capturing this

data directly at IR call site, eliminates the fragile program-

counter–to–IR mapping required by sampling-based profil-

ing tools [39]. RIFS performs value profiling on the baseline

IR of the application, compiled with all available -O3 and

PGO optimizations. To reduce the overhead of value pro-

filing, our tool currently only considers the most valuable

argument types (integers), andwe only enable value profiling

for functions that have been called frequently (correlating

with cpu cycle time). Focusing on hot functions is essen-

tial, since specializing cold code rarely delivers performance

improvement while causing unnecessary code bloat.

For each call instruction located in the hot functions, the

pass captures caller/callee identity, the location of the call in

the source code (file/line/col), and runtime values of integer-

typed parameters. We collect these into per-call site his-

tograms and organize arguments as fully invariant or semi-

invariant based on their observed values. Since integer argu-

ments map inherently to constant propagation than floating

point types, and do not have the aliasing complexities of

pointer-based arguments, they provide more compile-time

optimization oportunities, e.g. for inlining. While the frame-

work can be extended to profile non-integer types, to balance

profiling cost and optimization impact, RIFS limits value pro-

filing to integers. The collected value profiles are attached

to the baseline IR as organized metadata including the ar-

gument index, top-K most frequent values with their occur-

rence counts, invariance flags, and a call site identifier.

44

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

4.2 Profile-Guided Function Specialization Pass

In the second phase, RIFS utilizes the metadata obtained in

Section 4.1, to automatically perform function specialization

for value invariant functions. For this purpose, we imple-

ment a new function-level code transformation LLVM pass

named FunctionSpecializationPass, that can be provided to

the LLVM optimizer and analyzer via the opt command. The

LLVM pass takes the -O3 optimized baseline IR as input and

generates an improved output LLVM IR. In particular, RIFS
performs the following steps. (1) It uses metadata attached

to the IR to determine call sites and functions in the IR level

that need to be specialized. (2) It replicates the body of all

specialized functions (3) It replaces the function argument

with a constant local variable in the replica, (4) It splits the

call site and inserts a new path to select between the origi-

nal and replica function based on the actual runtime value

provided as argument. The key algorithm implemented by

RIFS’s LLVM pass is shown in Algorithm 1.

Algorithm 1 The proposed profile-guided LLVM Function

Specialization Pass of RIFS (pseudo-code)
Require: Input: MatchedProfiles (IR MD)

1: procedure FuncSpecPass(Function F)

2: 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝐺𝑟𝑜𝑢𝑝𝑠 ← GroupProfilesBySpecialization(𝐹)
3: for all (CallB, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) in 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝐺𝑟𝑜𝑢𝑝𝑠 do
4: 𝑐𝑎𝑙𝑙𝑒𝑒 ← getCalledFunction(CallB) ;
5: if ¬𝑐𝑎𝑙𝑙𝑒𝑒 or decl then continue
6: (𝑁𝑢𝑚𝐴𝑟𝑔𝑠𝐼𝑛𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒, 𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠) ← ReadIRMD(CallB)
7: if ¬CostModelAccepts(CallB, 𝑐𝑎𝑙𝑙𝑒𝑒, 𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠) then continue
8: if |𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 |=1 ∧ |𝑁𝑢𝑚𝐴𝑟𝑔𝑠𝐼𝑛𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒 |=1 then ⊲ Case A: 1 cluster, 1 arg
9: (𝑘𝑒𝑦, _) ← the single cluster ⊲ 𝑘𝑒𝑦 ≡ (𝑎𝑟𝑔𝐼𝑑𝑥 ↦→ 𝑎𝑟𝑔𝑉𝑎𝑙)
10: 𝐹𝑆 ← CloneWithConst(𝑐𝑎𝑙𝑙𝑒𝑒, 𝑘𝑒𝑦) ; SplitAt(CallB)
11: if (𝑎𝑟𝑔[𝑎𝑟𝑔𝐼𝑑𝑥]=𝑎𝑟𝑔𝑉𝑎𝑙) then call 𝐹𝑆 else call original
12: RepairPHIsAndCFG()

13: else if |𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 |>1 ∧ |𝑁𝑢𝑚𝐴𝑟𝑔𝑠𝐼𝑛𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒 |=1 then ⊲ Case B: many clusters, 1

arg

14: 𝑖 ← the single specialized arg; 𝑆 ← {𝑣 | (𝑖 ↦→𝑣) ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 }
15: for all 𝑣 ∈ 𝑆 do
16: 𝐹𝑆𝑣 ← CloneWithConst(𝑐𝑎𝑙𝑙𝑒𝑒, { (𝑖, 𝑣) })
17: SplitAt(CallB); BuildSwitchOnArg(𝑎𝑟𝑔[𝑖], {𝑣→𝐹𝑆𝑣 }, default = orig)
18: RepairPHIsAndCFG()

19: else ⊲ Case C: many clusters, many args

20: I ← sorted arg indices in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ; ∀𝑖 ∈ I : 𝑆𝑖 ← domain from 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
21: for all 𝑡 ∈ ∏𝑖∈I 𝑆𝑖 do
22: 𝐹𝑆𝑡 ← CloneWithConst(𝑐𝑎𝑙𝑙𝑒𝑒, { (𝑖, 𝑡 [𝑖]) }𝑖∈I)
23: SplitAt(CallB); 𝑘𝑒𝑦 ← PackTupleOrdinals(𝑎𝑟𝑔[I], {𝑆𝑖 })
24: BuildSwitchOnKey(𝑘𝑒𝑦, {𝑡→𝐹𝑆𝑡 }, default = orig) ; RepairPHIsAndCFG()

(1) LLVM IR lookup of candidate functions. In this step,

RIFS find the function specialization candidates in the LLVM-

IR by exploring the MatchedProfiles metadata attached to

each callsite. In particular, for each hot call instruction, the

metadata reports the runtime value-invariant arguments

together with their specialization signature including ar-

gument indices, the top K values taken by the argument, and

the frequency of each value. Then, the pass groups call sites

that share the same callee and the same set of specialized

arguments indices in their specialization signatures into

a single cluster. RIFS then consults a cost model to estimates

the benefit score for each candidate based on the predicted

speedup and code-size increase (lines 1-10). We provide more

information about the cost model in Section 4.3.

(2) Function Specialization Prototype Selection. To in-

crease coverage, RIFS supports three different function spe-

cialization prototypes including (i) single invariant argu-

ments, (ii) multiple, semi-invariant arguments (e.g. two com-

mmon values), (iii) multiple value invariant parameters (e.g.

two invariant arguments). (i) For single invariant arguments,

the pass creates one replica of the callee function via cloning.

To enable later compiler optimizations such as constant prop-

agation, the LLVM pass then replaces the orginal argument

in the specialized function with a constant local variable set

to the profiled value. Additionally, it splits the call site’s block

to insert a conditional branch (lines 8-12) selecting between

the original and the specialized function (fast-path) based

on the runtime argument value. This must be done to en-

sure correctness, as profiling cannot ensure that an invariant

argument is always invariant.

(ii) If the profiling pass captures multiple frequent values

for the same argument, the pass creates one clone function

per value and builds a switch case, based on the value of the

invariant argument to branch to the correct cloned function.

The default edge of the switch case branches to the original

callee. The passes perform the same techniques as described

for path (i) for both function cloning and safety checks for

call site splitting. We limit the number of switch cases to 5

as otherwise the call frequency for individual functions is

too low.

(iii) To support multiple invariant values across multiple ar-

guments, the pass lists the Cartesian product of per argument

value domains, creates a cloned function per combination of

value-invariant arguments and then sets the values of these

arguments to the profiled constant values. The pass emits a

compact multi-argument switch case in the call site to jump

to the cloned function when the argument values match the

profiled values during run time. Again, the default edge of

the switch case branches to the original function for safety

purposes (lines 19-24).

Example Use Case. We now provide an example use case of

how RIFS generates an optimized output IR from an input IR

utilizing the Swaptions application from the PARSEC bench-

mark suite (for more details about swaptions see Section 3).

Listing 2 shows the IR representation of the call site and

the callee (target of the call) for the value invariant function

call in the swaptions benchmark described in Listing 1. The

optimizations performed by the LLVM pass can be seen in

the highlighted lines in the call site, Listing 3, and the callee,

Listing 4, of the output LLVM IR. In the new call site, the

FastCallPath-0 is inserted as an optimized path to jump to

the specialized function, SimPath_Forward_Blocking.1, if
the current value of the argument is equal to the profiled

value of 11 in the comparisons done in lines (10-13) of List-

ing 3. In the specialized function, as shown in Listing 4, the

new version of the value invariant argument is created by

45

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

1 Call Site :

2 define dso_local noundef

3 i32 HJM_Swaption_Blocking(

4 ptr noundef %0, double noundef %1,

5 double noundef %2, ... , i32 %14)

6 local_unnamed_addr #15{

7 ...

8 137: ;preds = %. _crit_edge36, %87

9 ...

10 %141 = call noundef

11 i32 SimPath_Forward_Blocking(

12 ptr noundef nonnull %35, i32 noundef %6,

13 ..., i32 noundef %13)

14 br i1 %99, label %. loopexit 40 ,

15 label %. _crit_edge34

16 ...

17 }

18 -

19 Callee :

20 define dso_local noundef

21 i32 HJM_SimPath_Forward_Blocking

22 (ptr noundef %0, i32 noundef %1,

23 ... , i32 noundef %8)

24 local_unnamed_addr #15{

25 %10 = sitofp i32 %1 to double

26 %11 = fdiv double %3, %10

27 %12 = tail call double

28 @sqrt(double noundef %11)

29 %13 = add nsw i32 %2, -1

30 %14 = sext i32 %13 to i64

31 %15 = mul nsw i32 %8, %1

32 %16 = add nsw i32 %15, -1

33 %17 = sext i32 %16 to i64

34 %18 = tail call noundef ptr @_Z7dmatrixllll

35 (i64 noundef 0, ... , i64 noundef %17)

36 %19 = tail call noundef ptr @_Z7dmatrixllll

37 (i64 noundef 0, ... , i64 noundef %17)

38 %20 = icmp sgt i32 %8, 0

39 %21 = icmp sgt i32 %1, 0

40 %22 = and i1 %21, %20

41 br i1 %22, label %23, label %312

42 ...

Listing 2. Original call Site and Callee

for swaptions before applying RIFS

1 Call Site :

2 define dso_local noundef

3 i32 HJM_Swaption_Blocking(

4 ptr noundef %0, double noundef %1,

5 double noundef %2, ... , i32 %14)

6 local_unnamed_addr #15{

7 ...

8 137: ; preds = %. _crit_edge36, %87

9 ...

10 %141 = trunc i64 11 to i32

11 %142 = icmp eq i32 %6, %141

12 br i1 %142, label %FastCallPath-0,

13 label %OrgCallPath-0

14 FastCallPath-0: ; preds = %137

15 %143 = call noundef i32

SimPath_Forward_Blocking.1(

16 ptr noundef nonnull %35, i32 noundef %6,

17 ..., i32 noundef %13)

18 br label % tail -0

19 OrgCallPath-0: ; preds = %137

20 %144 = call noundef i32

SimPath_Forward_Blocking(

21 ptr noundef nonnull %35, i32 noundef %6,

22 ... , i32 noundef %13)

23 br label % tail -0

24 tail -0 : ; preds = %OrgCallPath-0, %

FastCallPath-0

25 %145 = phi i32 [%143, %FastCallPath-0] ,

26 [%144, %OrgCallPath-0]

27 br i1 %99, label %. loopexit 40 , label %

. _crit_edge34

28

29

30

31

32

33

34

35

36

37 ...

Listing 3. Call Site of swaptions bench-
mark after applying RIFS

1 Callee :

2 define dso_local noundef

3 i32 HJM_SimPath_Forward_Blocking

4 (ptr nocapture noundef

5 readonly %0,

6 ... , i32 noundef %8)

7 local_unnamed_addr #15

8 %arg1 = alloca i32, align 4,

9 store i32 11, ptr %arg1, align 4,

10 %argLoaded1 = load i32, ptr %arg1, align 4,

11 %10 = sitofp i32 %argLoaded1 to double,

12 %11 = fdiv double %3, %10,

13 %12 = tail call

14 double @sqrt(double noundef %11) #28

15 %13 = add nsw i32 %2, -1

16 %14 = sext i32 %13 to i64

17 %15 = mul nsw i32 %8, %argLoaded1

18 %16 = add nsw i32 %15, -1

19 %17 = sext i32 %16 to i64

20 %18 = tail call noundef

21 ptr @_Z7dmatrixllll (i64 noundef 0,

22 i64 noundef %14, i64 noundef 0, i64 noundef %1

7)

23 %19 = tail call noundef ptr @_Z7dmatrixllll

24 (i64 noundef 0, i64 noundef %14,

25 i64 noundef 0, i64 noundef %17)

26 %20 = icmp sgt i32 %8, 0

27 %21 = icmp sgt i32 %argLoaded1 , 0

28 %22 = and i1 %21, %20

29 br i1 %22, label %23, label %312

30

31

32

33

34

35

36

37

38

39

40 ...

Listing 4. Specialized function code for

swaptions after applying RIFS

defining argLoaded1 in line 10 and storing the profiled value,

11, in the new variable in line 9. argLoaded1 is also replaced

with the old version of the value invariant argument in the

following dependent instructions in the body of specialized

function.

4.3 Cost Model for Selecting Optimization
Candidates

Although function specialization can significantly improve

application performance, it can also increase code size

through code replication, potentially leading to more in-

struction cache misses. Furthermore, as RIFS supports single-
argument, multiple-value, and multiple-argument specializa-

tions across multiple functions and call sites, there is a large

optimization space that needs to be explored. RIFS introduces
a novel cost model to guide function specialization decisions

at compile time. After applying function specialization, RIFS
applies the O3 pipeline, including constant propagation and

inlining, to observe effects at the IR level. In particular, our

data-driven cost model compares a specialized IR with the

baseline IR (before any function specialization) and then

trains a machine learning model to predict the performance

impact of the changes introduced by function specialization.

For multiple IRs representing different function specializa-

tion configurations, the model can rank them based on their

expected performance impact. RIFS then selects the best IR

as predicted by the model to be used. To train our model, we

compile a dataset containing 1000 data points per application,

where each data point corresponds to a specific combination

of function specializations. We detect cases where function

specialization reduces the specialized function’s size and

enables interprocedural optimizations to inline it into the

caller. Because of that, the model’s feature vector includes

changes to both the call site and the callee before and after

specialization to inform ranking. To label our dataset, we

measure the execution time for each data point. As a result,

46

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

the model learns to predict the execution time based on a

set of input features summarized in Table 2.

In particular, the model considers the delta between the

generated specialized IRs and the baseline IR during both

training and inference. The metrics are IR-level instruction

changes, structural shifts in the control flow graph, such as

loop nesting characteristics, and estimated computational

density, as well as modified data dependencies, such as dom-

inance depth (the number of dependent IR instructions to

the argument value). For the machine learning component,

we tested different models, including LightGBM [33], de-

cision trees [35], and random forest [15] approaches, with

LightGBM yielding the best results. The trained model is

integrated into the compiler pipeline as a cost analysis mod-

ule. After the model selects an optimization variant, LLVM

generates the final output binary. As a result, our technique

allows LLVM to explore a large number of possible optimiza-

tion candidates with low overhead on the IR level, without

the need to exhaustively measure the execution time of each

variant. The model is portable because it is not machine-

specific and uses IR-level analysis to collect data and extract

control-flow features for training. Furthermore, the dataset

per application has a small storage overhead in the range

of 25 MB to 1 GB and negligible runtime cost. Training the

model, as a one-time overhead, and inference takes less than

60 seconds per application on average, which is an insignifi-

cant overhead compared to performing all code generation,

link time, and evaluation steps on all optimization candidates

to detect beneficial candidates.

4.4 Implementation

RIFS can be integrated into existing compilation pipelines

with minimal disruption. For instance, data center operators

such as Google and Meta already rely heavily on profile-

guided optimizations (PGO) in their production toolchains.

Since the value profiling and function specialization mech-

anisms in RIFS are implemented as LLVM transformation

passes, they can be inserted alongside existing optimizations

such as function inlining and function reordering. To in-

corporate RIFS, developers first enable PGO in the Clang

compiler to generate an instrumented LLVM IR enriched

with execution profiling data [39]. After this step, RIFS ’s

LLVM pass can be applied to the IR. This pass performs

value profiling to collect specialization candidates and uses

the trained classification-based cost model to decide, for each

candidate, whether specialization is likely to yield perfor-

mance gains. Only candidates predicted to be beneficial are

transformed. This selective application reduces code bloat

while retaining performance advantages. Our specialization

path then utilized the pre-trained cost model to select valu-

able optimization candidates. Following the specialization

step, the resulting optimized IR proceede through the rest of

the compilation pipeline, including post-link optimizations

with tools such as BOLT [7] or Propeller [51]. By acting as

a plug-in cost-aware specialization pass, RIFS enables im-

proved IR customization with no manual intervention or

substantial changes to existing infrastructure.

5 Evaluation

We now describe our experimental methodology, bench-

marked applications, and evaluation results. In particular,

We evaluate RIFS in terms of execution time improvements,

branch miss prediction reductions, and dynamic instructions

reduction.

5.1 Methodology

Experimental Setup. We perform all experiments on an

Intel Xeon Gold 5218R CPU with two sockets containing

16 cores and 32 threads, all running at 2.30Hz. Each core

has access to a 32 KiB L1i, a 32 KiB L1d, a 1 MiB L2, and

a 44 MiB L3 shared cache. The machine runs on Ubuntu

Linux 20.04.6 with kernel version 5.4. We utilize the LLVM

infrastructure and Clang compiler, version 20.0.0, to develop

the value profiling and function specialization passes and

compile the applications. The IR representation of the appli-

cations is generated by WLLVM [3], which builds a single

whole-program LLVM IR file from C or C++ source packages

instead of compiling source files individually and linking

them later. We use Intel’s hardware performance monitoring

features, such as processor event-based sampling PEBS [30],

Linux perf record [47], and perf stat, to gather performance

counter statistics. We execute workloads 5 times for all tests,

averaging the measured performance counters to compute

speedup and instructions reduction results. We disable fre-

quency scaling and turbo boost, setting the CPU to 2GHz, to

ensure reproducibility.

Cost Model. To evaluate the cost model for RIFS, we split
our labeled dataset, consisting of the features discussed in

Section 4.3, into 80% for training and 20% for evaluation.

We use 5-fold cross-validation, so that each data point is

included in the evaluation set exactly once. For the accuracy

evaluation, we compute the average accuracy of the five

evaluation runs. For the execution time evaluation, we ask

the model to rank all candidates in the evaluation set, then

pick the top candidate across all five evaluation sets, giving

the model a chance to select the best optimization candidate

across the whole data set.

Evaluated Applications. We utilize the SPEC

CPU2017(rate) [4] Integer and Floating points bench-

marks that exhibit value invariant function call parameters,

including 500.perlbench_r, 502.gcc_r, 505.mcf_r, 525.x264_r,

47

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Table 2. Summary of static features extracted for the function specialization cost model.

Category Feature Description

CFG Structure

V_base / V_after Number of basic blocks before and after specialization.

E_base / E_after Number of control-flow edges before and after specialization.

dV / dE Change in blocks/edges: V_after V_base, E_after E_base.

CFG Shape

avg_out Average out-degree: E / V, before and after specialization.

density CFG density: E / (V * (V - 1)), before and after.

Block Frequencies (BFI)

maxFreq / meanFreq Maximum and mean Basic Block execution frequencies in the Caller/Callee

functions.

BB_75, BB_50, BB_25 Number of Basic Blocks in the Caller/Callee functions with basic block

frequencies of 75%, 50%, and 25% of the max.

Opcode Counts

Base_Count / Opt_Count Number of opcode instances before and after specialization.

RemovedCount / IncreasedCount Number of instructions removed or added.

Arg Dependence

DepTypeToArg Instruction Opcode Types in baseline dependent on the specialized argu-

ment.

RemovedCountByArg Dependent instructions to the value invariant argument removed in the

optimized IR.

AllDepToArg / AllRemovedByArg Total number of dependent instructions and those eliminated due to value

invariant argument.

Opcode Hotness

Sum_BFI_Func Total BFI weights for basic blocks in the Caller/Callee functions, by consid-

ering the opcode type weight in both baseline and optimized IRs.

Sum_BFI_Func_Removed_by_Arg Total BFI weights of blocks with removed IR instructions due to dependency

on value invariant argument in the optimized IR.

IR-Wide Stats

Count_Base_IR / Count_OPT_IR Total opcode counts in the full baseline and the optimized IR.

Count_Reduction_IR Net change in opcode counts across the IR.

531.deepsjeng_r, and 538.imagick_r. We use train inputs

for all SPEC2017 benchmarks, except 538.imagick_r, eval-

uated with the reference input. Furthermore, we evaluate

swaptions and freqmine from the Parsec-3.0 [59] benchmark

suite, which also features value invariant parameters. We

evaluate hotspot, hotspot3D, bfs, and kmeans from the

Rodinia Benchmark Suite 3.1 [19] utilizing realistic input

datasets.

Baseline Implementations. We compare RIFS against

LLVM’s -O3 plus PGO baseline and two state-of-the-art prior

works, Ali [8] and Perianayagam [43], in terms of execution

time and reduction in dynamic instruction count. We adapt

and extend both Ali and Perianayagam to work with LLVM

20.0.0, integrating their heuristics into a PGO-based compi-

lation flow to minimize runtime overhead. In addition, we

enhance Perianayagam’s approach to support arbitrary user-

space applications and enable both baselines to leverage the

new profiling mechanism introduced by RIFS, ensuring a fair
comparison.

Even with these improvements, we will show that our prac-

tical implementation (RIFS-COST-MODEL) achieves sub-
stantially higher speedups based on the ability to explore

a broader set of candidate functions and employing an ad-

vanced cost model for function selection. Furthermore, we re-

port the upper bound on performance improvement—RIFS-
IDEAL—representing an idealized implementation that ex-

haustively explores all candidates without regard to compi-

lation time.

5.2 Execution Time Improvement

Figure 3 summarizes execution-time speedups of RIFS rela-
tive to the LLVM’s -O3 plus PGO baseline. Execution time is

measured using perf stat’s user time metric. For each bench-

mark, we report (i) the ideal speedup observed among all

optimized IRs generated by RIFS and (ii) the speedup of the

IR selected by RIFS ’s cost model. We also compare with two

state-of-the-art approaches [8, 43] on all benchmarks. Since

Perianayagam’s work [43] limits performing function spe-

cialization only for the functions that cover at least 90% of

the executed dynamic instructions during run time, it misses

the specialization opportunities for most of the applications,

such as 505.mcf_r where all the functions are executing less

than 50% of the dynamic instructions. Ali’s paper [8] also

limits performing function specialization for value invariant

arguments of the hot functions that are taken at least a value

for 500 times, and also they are used as the upper bound

for loop trip counts. These papers are not able to provide

execution time improvement for applications such as bfs

that the value frequency for the argument is lower than the

selected threshold and it is not used inside a loop definition.

As Figure 4 shows RIFS is able to reduce the branch miss

predictions significantly for several applications such as bfs

and hotspot which yields to 18.5% and 15.2% speedup im-

provement in these applications compared to the baseline.

In overall, RIFS’s cost model is able to improve the execution

time speedup for all application by 5.1% over the baseline on

average.

5.3 Total Instruction Count Reduction

In Figure 5, we show the instruction count reduction pro-

vided by RIFS over the baselines. We measure the total num-

ber of executed instructions utilizing the instructions PMU

counter running the perf stat command. As Figure 5 illus-

trates, on average, RIFS can reduce the number of executed

instructions by 2.5% over the baseline, providing a maximum

reduction of 22.8% times for swaptions application, while

48

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

Figure 3. The percentage of execution time speedup pro-

vided by RIFS (Ideal/Cost-Model) and prior works [8, 43]

over the baseline (O3+PGO)

Figure 4. The percentage of branch miss prediction re-

ductions provided by RIFS (Ideal/Cost-Model) and prior

works [8, 43] over the baseline (O3+PGO)

prior works [8, 43] achieve overall 2% and 0.3% instructions

reductions compared to the baseline, respectively.

5.4 Cost Model Evaluation

The data set contains over 7 million features from static

control-flow and data-flow analysis performed on the Caller

and Callee functions per specialization. After removing the

outliers, it contains approximately 1.7 million (29%) fea-

tures that represent positive speedup. LightGBM achieves

an overall accuracy of 81%, with a precision of 70% and

a recall of 66% for the positive class, yielding an F1-score

of 68%. Top features that influence both models include

post-specialization CFG shape and hotness metrics, includ-

ing number of basic blocks, avg_out,meanFreq, density,
and Count_Reduction_IR after optimizations —as well

as data-dependence features like AllRemovedByArg and

Figure 5. The percentage of instruction count reduction

provided by RIFS (Ideal/Cost-Model) and prior works [8, 43]

over the baseline (O3+PGO)

AllDepToArg. These features indicate code elimination or

simplification after function specializations compared to

the baseline IR. These results suggest that structural and

execution-weighted IR features provide useful signs for au-

tomatically deciding which specialization candidates are

worthwhile, enabling an effective cost model that can in-

form compiler decisions or guide offline autotuning. The

model can also list some critical features, such as a high

number of instructions removed by AllRemovedByArg
and a large Sum_BFI_Func_Reduction, as strong signals
for achieving speedup. It may be possible to combine these

signals to generate a purely analytic cost model.

5.5 Code Bloat Overhead

While relying on simple heuristics, such as the number of

eliminated instructions due to constant propagation, is not

sufficient to detect beneficial candidates for function special-

ization, the systematic analysis of binaries is also costly to

perform in the compilation and linking stages. The machine

learning model controls both code growth and compile-time

overhead by filtering top candidates. RIFS only performs

functions that specialize in hot functions with a maximum

of five arguments per call site. Therefore, the model filters

many optimization candidates to reduce code bloat. We use

the Bloaty [6] tool, a binary-size profiler, to analyze the

binary size increase introduced by RIFS due to function spe-

cialization. We analyze the impact of code replication on

total and text size increases in two domains: file size and

virtual memory usage, comparing RIFS against the LLVM

baseline (-O3+PGO). We utilize Bloaty’s Size Diffs option to

obtain the data shown in Table 3. The first column of Table 3

indicates that the binary file size increases after applying

RIFS in the .text section, which is the size of data emitted by

the functions or variables in the code. The second column

shows how much the size of the binary file changed overall.

The last two columns of Table 3 show the changes in the

49

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

virtual memory (VM) taken by the .text section of the binary

and the overall increase in VM size, respectively. As shown,

for most applications, especially the large SPEC2017 bench-

marks, such as 500. perlbench_r, the percentage increase in

the binary file size and VM size is very small. In some cases,

such as 525.x264_r, the code size decreases because of op-

portunities enabled by RIFS’s function specialization, which

enables further optimizations such as constant propagation

and inlining. On average, RIFS increases the total file size by
5.96% and the total VM size by 8.19%.

Table 3. The impact of function specialization by RIFS in the

file and Virtual Memory Sizes increase

Application File Size File Size VM Size VM Size
.text (%) Total (%) .text (%) Total (%)

500.perlbench_r +1.10 +1.83 +1.10 +1.28

505.mcf_r +5.30 +8.81 +5.30 +4.83

525.x264_r -43.65 -30.99 -43.65 -38.04

531.deepsjeng_r +34.88 +36.45 +34.88 +0.84

538.imagick_r -0.59 +0.46 -0.59 -0.99

swaptions +38.61 +0.65 +38.61 +32.55

freqmine +8.14 +7.63 +8.14 +0.76

hotspot +32.51 +5.66 +32.51 +19.83

hotspot3D +26.94 +3.02 +26.94 +15.14

bfs +55.38 +11.43 +55.38 +29.02

kmeans +39.00 +20.56 +39.00 +24.92

Mean +17.97 +5.96 +17.97 +8.19

6 Related Work

Static Compiler Techniques. Several prior works [11–

13, 23, 40, 52, 58] propose function specialization based on

static arguments known to be constant at compile-time.

These works utilize different techniques, such as static analy-

sis, concept-based specialization, and argument binding, for

generating specialized versions of functions. The function

specialization opportunities are limited for these works since

they rely on static compiler information and cannot utilize

dynamic values of function parameters during run-time to

enable additional function specialization opportunities.

Function Specialization Optimizations. Prior works [26–
28, 38] propose Just-In-Time (JIT) approaches to perform

function specialization, while others rely on binary rewrit-

ing and function memorization [8, 54]. Both of these ap-

proaches introduce several limitations. JIT-based approaches

are limited to managed languages such as JavaScript and,

in contrast to RIFS, do not support C/C++. They further-

more introduce continuous overheads for profiling JIT-ing

at run-time, whereas RIFS amortizes a single profiling run

over many application executions. Arjun [54] proposes mem-

orization techniques to replay return values generated by

functions based on their input values. In this case, whenever

functions are provided with previously seen arguments, the

approach returns memorized values from a table instead of

re-executing the target function. The main problem with

memorization techniques is that they need to prove that

functions do not rely on external (global) variables or any

other state that is not directly provided through function

arguments, reducing the applicability of this technique. Ad-

ditionally, for applications with large numbers of functions

they introduce time and storage overhead to monitor and

store the values of arguments and the return values during

the whole execution time of the program.

Performance analysis tools. To recognize the hot regions

of codes that significantly affect the performance of appli-

cations in terms of consumed CPU cycles and power con-

sumption, a wide range of performance analysis tools are

developed, such as perf[47], Vtune[46] tools from Intel, and

OProfile[21]. These tools help understand the effectiveness of

applied compiler optimizations on the performance counter

numbers for programs, such as the total number of executed

dynamic instructions, cycles, and cache misses. However,

they cannot learn value-invariant function arguments as re-

quired by RIFS. Tools including LOADSPY [53], mProfile [5],

and RedSpy [57] can perform value profiling for the load

or store instructions and they are not designed for perform-

ing value profiling on the values taken by function param-

eters. Furthermore, they provide higher storage and execu-

tion overheads. None of these tools present an automated

compiler-assisted approach for exploiting value invariance.

7 Conclusion

In this paper, we propose RIFS, an automated function special-

ization technique for fully and semi-value invariant function

arguments. Our approach introduces a value profiling LLVM

pass to capture the dynamic behavior of value invariant

function arguments and a safe LLVM code transformation

pass to perform function specialization. Additionally, we

introduce a cost model that is able to select the optimized

LLVM IR with function specializations which provides the

performance improvment near to ideal IR. We show that

RIFS improves the performance of SPEC2017, PARSEC-3.0,

and Rodinia Benchmark Suite 3.1 [19] applications by up

to 18.5% and 6.3% on average. We also show that RIFS out-
performs two state-of-the-art previous works, Ali [8] and

Perianayagam[43]. Since RIFS is implemented at the LLVM

intermediate representation layer, it can be integrated easily

within any existing PGO-based pipeline.

Acknowledgements

Thisworkwas supported byGoogle, NSF grant #1942754, and

the CRSS Industrial Advisory Board. We thank David Li and

Teresa Johnson for their helpful discussions and feedback.

50

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

References

[1] 1987. GCC, the GNU Compiler Collection. https://gcc.gnu.org/
[2] 2003. LTO. https://www.llvm.org/docs/LinkTimeOptimization.html
[3] 2016. Whole Program LLVM. https://github.com/travitch/whole-

program-llvm
[4] 2017. SPEC CPU 2017. https://www.spec.org/cpu2017/
[5] 2019. mprofile value profiling tool. https://github.com/

mounikaponugoti/Tracing-tools
[6] 2020. Bloaty: a size profiler for binaries. https://github.com/google/

bloaty
[7] 2023. llvm-bolt. https://github.com/llvm/llvm-project/blob/main/bolt/

README.md
[8] AP Arif Ali and Erven Rohou. 2017. Dynamic function specializa-

tion. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, 163–170.

[9] Randy Allen and Steve Johnson. 1988. Compiling C for vectorization,

parallelization, and inline expansion. ACM SIGPLAN Notices 23, 7
(1988), 241–249.

[10] Lars Ole Andersen. 1992. Partial evaluation of C and automatic com-

piler generation. In Compiler Construction: 4th International Conference,
CC’92 Paderborn, FRG, October 5–7, 1992 Proceedings 4. Springer, 251–
257.

[11] Lars Ole Andersen. 1992. Self-applicable C Program Specialization.

PEPM 92, 28 (1992), 54–61.

[12] Lars Ole Andersen. 1994. Program analysis and specialization for the

C programming language. (1994).

[13] Bruno Bachelet, Antoine Mahul, and Loïc Yon. 2010. Generic Program-

ming: Controlling Static Specialization with Concepts in C+. (2010).

[14] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler

transformations for high-performance computing. ACM Computing
Surveys (CSUR) 26, 4 (1994), 345–420.

[15] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001),

5–32.

[16] Preston Briggs, Keith D Cooper, and L Taylor Simpson. 1997. Value

numbering. Software: Practice and Experience 27, 6 (1997), 701–724.
[17] Preston Briggs, Doug Evans, Brian Grant, Robert Hundt, William Mad-

dox, Diego Novillo, Seongbae Park, David Sehr, Ian Taylor, and Ollie

Wild. 2007. WHOPR-Fast and Scalable Whole Program Optimizations

in GCC. Initial Draft 12 (2007).
[18] Jacques Carette. 2004. Understanding expression simplification. In Pro-

ceedings of the 2004 international symposium on Symbolic and algebraic
computation. 72–79.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-

mark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC). Ieee, 44–54.

[20] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:

Automatic feedback-directed optimization for warehouse-scale appli-

cations. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. 12–23.

[21] William E Cohen. 2004. Tuning programs with OProfile. Wide Open
Magazine 1 (2004), 53–62.

[22] Keith D Cooper, L Taylor Simpson, and Christopher A Vick. 2001. Oper-

ator strength reduction. ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 5 (2001), 603–625.

[23] Piotr Danilewski, Marcel Köster, Roland Leißa, Richard Membarth,

and Philipp Slusallek. 2014. Specialization through dynamic staging.

ACM SIGPLAN Notices 50, 3 (2014), 103–112.
[24] Jack W Davidson and Anne M Holler. 1988. A study of a C function

inliner. Software: Practice and Experience 18, 8 (1988), 775–790.
[25] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. 2011. Dark silicon and the end of multicore

scaling. In Proceedings of the 38th annual international symposium on

Computer architecture. 365–376.
[26] Olivier Flückiger. 2022. Just in Time: Assumptions and Speculations.

Ph. D. Dissertation. Northeastern University.

[27] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain,

and Jan Vitek. 2020. Contextual dispatch for function specialization.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),

1–24.

[28] Tyler Gobran, João PL de Carvalho, and Christopher Barton. 2023.

DASS: Dynamic Adaptive Sub-Target Specialization. In 2023 Interna-
tional Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW). IEEE, 36–45.

[29] John CockePeterWilly Markstein google patents. [n. d.]. Reassociation

process for code optimization. https://patents.google.com/patent/
EP0273130A2/en

[30] Part Guide. 2011. Intel® 64 and ia-32 architectures software developer’s

manual. Volume 3B: System programming Guide, Part 2, 11 (2011), 1–64.
[31] Sumit Gupta, Mehrdad Reshadi, Nick Savoiu, Nikil Dutt, Rajesh Gupta,

and Alex Nicolau. 2002. Dynamic common sub-expression elimination

during scheduling in high-level synthesis. In Proceedings of the 15th
international symposium on System Synthesis. 261–266.

[32] Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017. ThinLTO:

scalable and incremental LTO. In 2017 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE, 111–121.

[33] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-

dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient

gradient boosting decision tree. Advances in neural information pro-
cessing systems 30 (2017).

[34] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial dead

code elimination. ACM Sigplan Notices 29, 6 (1994), 147–158.
[35] Sotiris B Kotsiantis. 2013. Decision trees: a recent overview. Artificial

Intelligence Review 39, 4 (2013), 261–283.

[36] David Lacey, Neil D Jones, Eric Van Wyk, and Carl Christian Fred-

eriksen. 2004. Compiler optimization correctness by temporal logic.

Higher-Order and Symbolic Computation 17 (2004), 173–206.

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE,
75–86.

[38] Caio Lima, Junio Cezar, Guilherme Vieira Leobas, Erven Rohou, and

Fernando Magno Quintão Pereira. 2020. Guided just-in-time special-

ization. Science of Computer Programming 185 (2020), 102318.

[39] CLANG COMPILER USER’S MANUAL. [n. d.]. Profile-Guided Opti-

mizations for Clang. https://clang.llvm.org/docs/UsersManual.html#
profile-guided-optimization

[40] Shachee Mishra and Michalis Polychronakis. 2020. Saffire: Context-

sensitive function specialization against code reuse attacks. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
17–33.

[41] Steven Muchnick. 1997. Advanced compiler design implementation.
Morgan kaufmann.

[42] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.

2019. Bolt: a practical binary optimizer for data centers and beyond.

In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2–14.

[43] Somu Perianayagam, HaiFeng He, Mohan Rajagopalan, Gregory An-

drews, and Saumya Debray. 2006. Profile-guided specialization of an

operating system kernel. In Proc. Workshop on Binary Instrumentation
and Applications.

[44] Karl Pettis and Robert C Hansen. 1990. Profile guided code positioning.

In Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation. 16–27.

[45] Alex Ramirez, Josep Lluís Larriba-Pey, and Mateo Valero. 2000. The

effect of code reordering on branch prediction. In Proceedings 2000

51

https://gcc.gnu.org/
https://www.llvm.org/docs/LinkTimeOptimization.html
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://www.spec.org/cpu2017/
https://github.com/mounikaponugoti/Tracing-tools
https://github.com/mounikaponugoti/Tracing-tools
https://github.com/google/bloaty
https://github.com/google/bloaty
https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://patents.google.com/patent/EP0273130A2/en
https://patents.google.com/patent/EP0273130A2/en
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

International Conference on Parallel Architectures and Compilation Tech-
niques (Cat. No. PR00622). IEEE, 189–198.

[46] James Reinders. 2005. VTune performance analyzer essentials. Vol. 9.
Intel Press Santa Clara.

[47] Otto Bruggeman Patrick Fay Patrick Ungerer Austen Ott Patrick

Lu James Harris Phil Kerly Patrick Konsor Andrey Semin Michael

Kanaly Ryan Brazones Rahul Shah Jacob Dobkins Roman Demen-

tiev, Thomas Willhalm. [n. d.]. Intel Performance Counter Moni-
tor. https://www.intel.com/content/www/us/en/developer/articles/
tool/performance-counter-monitor.html

[48] Vivek Sarkar. 2000. Optimized unrolling of nested loops. In Proceedings
of the 14th international conference on Supercomputing. 153–166.

[49] Robert R Schaller. 1997. Moore’s law: past, present and future. IEEE
spectrum 34, 6 (1997), 52–59.

[50] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew

Legendre. 2001. Plto: A link-time optimizer for the Intel IA-32 ar-

chitecture. In Proc. 2001 Workshop on Binary Translation (WBT-2001),
Vol. 114.

[51] Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar,

Sriraman Tallam, and Xinliang David Li. 2023. Propeller: A profile

guided, relinking optimizer for warehouse-scale applications. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2.
617–631.

[52] Victor Hugo Sperle Campos, Péricles Rafael Alves, Henrique

Nazaré Santos, and Fernando Magno Quintão Pereira. 2016. Restricti-

fication of function arguments. In Proceedings of the 25th International
Conference on Compiler Construction. 163–173.

[53] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu.

2019. Redundant loads: A software inefficiency indicator. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 982–993.

[54] Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and André

Seznec. 2015. Intercepting functions for memoization: A case study

using transcendental functions. ACM Transactions on Architecture and
Code Optimization (TACO) 12, 2 (2015), 18–1.

[55] Jeffery Von Ronne. 2005. A Safe and Efficient Machine-independent
Code Transportation Format Based on Static Single Assignment Form
and Applied to Just-in Time Compilation. Ph. D. Dissertation. Citeseer.

[56] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propaga-

tion with conditional branches. ACM Transactions on Programming
Languages and Systems (TOPLAS) 13, 2 (1991), 181–210.

[57] ShashaWen, Milind Chabbi, and Xu Liu. 2017. Redspy: Exploring value

locality in software. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems. 47–61.

[58] John Robert Wernsing, Greg Stitt, and Jeremy Fowers. 2012. The

RACECAR heuristic for automatic function specialization on multi-

core heterogeneous systems. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded sys-
tems. 81–90.

[59] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017.

PARSEC3. 0: A multicore benchmark suite with network stacks and

SPLASH-2X. ACM SIGARCH Computer Architecture News 44, 5 (2017),
1–16.

Received 2025-11-10; accepted 2025-12-10

52

https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html

	Abstract
	1 Introduction
	2 Background
	2.1 Static Compilation Optimization Techniques
	2.2 Profile-Guided Optimization Techniques
	2.3 LLVM Compiler Infrastructure

	3 Analysis
	3.1 Are Value-Invariant Arguments Common?
	3.2 Which Argument Types to Optimize?
	3.3 Does Function Specialization Offer Optimization Opportunities?

	4 Design of RIFS
	4.1 Profile Collection
	4.2 Profile-Guided Function Specialization Pass
	4.3 Cost Model for Selecting Optimization Candidates
	4.4 Implementation

	5 Evaluation
	5.1 Methodology
	5.2 Execution Time Improvement
	5.3 Total Instruction Count Reduction
	5.4 Cost Model Evaluation
	5.5 Code Bloat Overhead

	6 Related Work
	7 Conclusion
	References

