
Needle : Leveraging Program Analysis to Analyze and Extract
Accelerators from Whole Programs

Snehasish Kumar, Nick Sumner

Simon Fraser University,
{ska124, wsumner}@cs.sfu.ca

Vijayalakshmi Srinivasan

IBM Research
viji@us.ibm.com

Steve Margerm, Arrvindh Shriraman

Simon Fraser University,
{smargerm, ashriram}@cs.sfu.ca

Abstract—Technology constraints have increasingly led to the
adoption of specialized coprocessors, i.e. hardware accelerators.
The first challenge that computer architects encounter is identi-
fying “what to specialize in the program”. We demonstrate that
this requires precise enumeration of program paths based on
dynamic program behavior. We hypothesize that path-based [4]
accelerator offloading leads to good coverage of dynamic
instructions and improve energy efficiency. Unfortunately, hot
paths across programs demonstrate diverse control flow be-
havior. Accelerators (typically based on dataflow execution),
often lack an energy-efficient, complexity effective, and high
performance (eg. branch prediction) support for control flow.

We have developed NEEDLE, an LLVM based compiler
framework that leverages dynamic profile information to
identify, merge, and offload acceleratable paths from whole
applications. NEEDLE derives insight into what code coverage
(and consequently energy reduction) an accelerator can achieve.
We also develop a novel program abstraction for offload
calledBraid, that merges common code regions across different
paths to improve coverage of the accelerator while trading
off the increase in dataflow size. This enables coarse grained
offloading, reducing interaction with the host CPU core. To
prepare the Braids and paths for acceleration, NEEDLE gener-
ates software frames. Software frames enable energy efficient
speculative execution on accelerators. They are accelerator
microarchitecture independent support speculative execution
including memory operations. NEEDLE is automated and has
been used to analyze 225K paths across 29 workloads. It filtered
and ranked 154K paths for acceleration across unmodified
SPEC, PARSEC and PERFECT workload suites. We target
NEEDLE’s offload regions toward a CGRA and demonstrate
34% performance and 20% energy improvement.

I. Introduction
While technology advances have enabled designers to

assume a virtually unlimited number of transistors, power

consumption per transistor no longer scales with feature

size. As a result, energy and power compose the primary

design constraints. Hardware acceleration, in the form of

customized datapath and control circuitry for particular

algorithms, may deliver the required performance and energy

scaling [20]. Recently, major vendors [7], [12] have released

multicore chips closely integrated with FPGAs. A central

tenet of many accelerators [16], [18], [44] (either custom

or reconfigurable) is their adoption of a dataflow-based

execution model to elide instruction fetch and improve energy

efficiency compared to the Out-of-Order (OOO) processor.

However, such accelerators often rely on the OOO for either

handling memory operations [17] and/or program control

flow. This may lead to a reduction in energy efficiency for

when offloading work to the accelerator at a fine granularity.

Often accelerators require an understanding of the spe-

cialized algorithm and program structure [37] to enable

appropriate offload region formation. Since programs include

complex control flow and have many possible execution paths,

it is challenging to profile and compose an offload region for

the accelerator. Real world examples of offloading a stable

code region required that the API be redefined [36]. Recent

works [31], [38], [40] have leveraged compiler intermediate

representation (IR) to aid architectural simulation and enable

comparison of different accelerator architectures. Such works

still seem to largely leave unanswered the questions, “what

code region in the original program should be specialized?”

and “how to prepare it for offload?”. Conventional profilers

and analysis tools, e.g. gprof or trace analysis, are unsuitable

for this task. Their scalability and accuracy is impeded

by the structure of typical programs, which tend to have

irregular control and dataflow. Compilers for coarse-grained

reconfigurable array (CGRA) like fabrics [16], while suc-

cessful for simple inner loops, find it challenging to prepare

effective offload regions with many flows of control. VLIW

compiler research has studied the formation of scheduling

regions larger than a basic block by exploiting hardware

predication (e.g., hyperblocks). Unfortunately, defining high

quality regions depend on heuristics [3] and predication

hardware; in Section II we analyze the specific requirements

of accelerators.

Our Insight and Proposal:
We demonstrate that an effective approach to building

accelerators requires dynamic profiling for accurate early-

stage exploration of the specialization tradeoffs between 1)

targeting few code paths for efficiency and 2) coverage

that seeks to offload a larger fraction of the application.

We develop NEEDLE, an LLVM framework that leverages

dynamic program analysis profiles to identify “what paths to

specialize” in a program, merge paths and prepare them for

acceleration. We study existing region formation algorithms

(see Section II) and demonstrate the efficacy of Ball-Larus

paths [4](BL-Path) for forming accelerator-friendly regions.

Figure 1 illustrates NEEDLE. Step 1 analyzes programs

to profile and construct two types of code regions for

accelerators to target: BL-Paths and Braids. BL-Paths are

single entry, single exit regions which represent a single flow

of control. A control flow divergence leads to a jump back to

the CPU and a reversion of externally visible program state.

Unfortunately, programs may execute a large number of

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.59

565

EXTRACT BL-

PATH

2

7

4
6

1

EXIT 4
CPU

EXIT 2
CPU

PathWhole Program
Control Graph

Speculative
dataflow graph

Step 1:
What to

Specialize?
Step 2:

Software
Frame

Backend code
generator
e.g.,Dyser[17],
 CGRA[33]
 CFU[18]

Performance
and Power models

1. Specialization vs coverage
2. Hardware features
3. Behavior specialization

EXTRACT

BRAID PATH

EXIT 1
CPU

EXIT 1
CPU

3
5

BRAID

2

7

4
6

1
control

flow

control
flow

BL-Path or Braid
guided

compilation

Plug-N-Play

to existing work

Accelerator

Design Analysis

Step 3: Accelerator Design

3

2

7

5

4

6

1

Acclerator

CPU
EXIT 1

CPU
EXIT 2

Cold path
and Rollback

Autosynthesis
e.g., FPGA [9]

e.g., Aladdin [40], TDGF [31]

Host
CPU

L1 Cache

Shared NUCA L2 (MESI)

Memory

Paper Organization
Scope and Related work §2
BL-Path extraction §3
Braids: merging paths to reduce overhead §4
Speculative execution on accelerators §5
Performance and Energy evaluation §6

Figure 1. Overview of the NEEDLE approach to define “what to Specialize”. NEEDLE uses dynamic profiles to identify hot Ball-Larus [4] paths and
merges them to create Braids improving code coverage. NEEDLE then generates software frames from the identified hot BL-Paths or Braids to enable
speculative execution on accelerators. NEEDLE supports multiple backends; we evaluate a CGRA backend.

paths (over 100K in the workloads we study) with no single

path dominating execution. This may lead to accelerators

frequently switching between different paths, imposing a

high overhead. To achieve high coverage we introduce a new

program abstraction, called Braid, that takes advantage of

the observation that many frequently executed BL-Paths tend

to have the same basic blocks. Braids merge overlapping

BL-Paths and seek to achieve high coverage. While BL-Paths

revert to the CPU on any control flow divergence, the intuition

behind Braids is that the program exits from the accelerator

to the CPU only when the control flow appears to break out

of a hot region of code. These regions are single-entry, single

exit but incorporate multiple flows of control. BL-Paths and

Braids are also inherently acyclic, we employ path prediction

to identify loop back edges and construct larger regions for

accelerator offload.

In Step 2, NEEDLE prepares the BL-Path and Braid

abstractions to run on the hardware accelerator by generating

software frames to handle control flow along the path and

enable speculation on accelerators. This reduces the accelera-

tor’s reliance on the power-hungry OOO processor. Software

frames support guarded execution on the accelerator [35].

NEEDLE creates frames by hoisting instructions in a BL-Path

above the branches in that BL-Path, fusing them to create

coarse-grained atomic regions of offload. The branches are

converted into asynchronous guards that determine whether

speculation was successful. NEEDLE’s frames permit all

operations to be speculative, including memory operations.

Software frames are accelerator microarchitecture indepen-

dent and do not depend on specific hardware features (e.g.,

store buffers [18], [39]). NEEDLE regulates when the guards

checks are inserted along the path to reduce the overheads

of speculation failure while raising the number of hoisted

operations to increase instruction parallelism.

We have analyzed over 225K paths across 29 workloads

from three benchmark suites (PARSEC, SPEC, PERFECT)

and analyzed the acceleration potential for 154K paths. NEE-
DLE automatically selects and generates the offload frames to

target a coarse-grained reconfigurable fabric (CGRA). Overall,

NEEDLE enabled offload improves performance by 34% and

reduces overall energy by 20%. We contribute the following:

• NEEDLE is an automated tool chain that leverages

dynamic workload profiles for the automatic selection

and construction of “accelerator-friendly” regions. NEE-
DLE is target accelerator independent. We release the

implementation as free and open source software [22].

• We introduce a new program abstraction, “Braids”, that

merges paths with common basic blocks to increase

accelerator code coverage with less impact to hardware

complexity and increased energy efficiency.

• NEEDLE generates software frames from hot paths and

Braids to support guarded execution [35] on accelerators.

This enables energy efficient software speculation and

enlarges the granularity of offload to accelerators.

II. Scope and Related Work
NEEDLE is a profiling and compilation framework for

sequential programs to target accelerators. A key impediment

to implementing complexity effective hardware accelerators

and precise code profiling is the control flow in sequential

programs. Here, we study how NEEDLE can help existing

accelerators handle multiple flows of control in a program

with software controlled speculation. We also discuss the

challenges with existing compiler abstractions for often used

for accelerators, superblocks and hyperblocks.

A. Hardware Accelerator Perspective
Spatial accelerators often use a dataflow-based approach,

custom or reconfigurable hardware, and use a compiler to

map computation to functional units. Prior work has shown

that code regions with regular control flow and abundant

data parallelism achieve high performance and efficiency

[8], [14], [17], [34]. However, sequential code with limited

566

B

E

F i <= 10

D

Break

Accelerator
CPU

i%10

i%3

 B

i<=10
....

C

on
branch

Compound
Function Unit

AcceleratorCPU

i<=10

back
branch

Non-Speculative
CGRA

nested
control

D

B or C

E

Speculative
Dataflow

Unrolled loop

CPU

Block
Exit

NEEDLE
Software Speculation

Hot paths

CPU

Path
failure

 Cold Path

Rollback

Multiple iteration
B', C', E'

Accelerator

i%10

i%3

D

B or C

E

i%10

i%3 B or C

E

i%3

Di%10

L
o

o
p

 b
ac

k
b

ra
n

ch

 C

 D E

i % 10
! = 0

i % 3
! = 0

Compound Unit Non Speculative CGRA Speculative Dataflow NEEDLE
[10], [15], [18], [37] [16], [32], [34], [41] [11], [42]

Target Code
Granularity Basic blocks��3© Hyperblocks Hyperblocks BL-Path [4] or Braid

Scope Few ops��3© Inner loops Full Program BL-Path or Braid

Design

Control flow None Predication��1© Dataflow predication��4© Software speculation
Branch prediction Necessary for high performance. Not required
Granularity Fine Medium (hyperblock) Coarse (paths)

Accelerator⇔OOO High��2© Medium (on block termination)��2© Low (on spec. failure)

Speculative Ops. None��1© None��1© Partial (No mem ops) Full
Rollback Granularity Small Medium (entire hyperblock) Flexible (sub-path)

Compiler Static Static or Profile-driven Profile-driven
Profiling Superblock Path-trees [16] None BL-Path or Braid
Code-gen Superblock Hyperblocks Hyperblocks BL-Path or Braid

1© Full speculation support. 2© High energy efficiency. 3© Coarse-grained offload. 4© Low hardware overhead

Figure 2. Comparison of sequential programs on spatial accelerator architectures

data parallelism, nested control-flow, and irregular memory

access patterns either compromise on performance [8], [14],

or energy efficiency [13]. Additionally, fine grained offload

regions require frequent interaction with the OOO processor,

leading to further energy waste. Figure 2 discusses the

design trade-offs in spatial accelerators. Prior approaches

can be broadly classified into three designs: i) compound

function units with minimal or no support for control flow. ii)

non-speculative CGRAs that leverage predication to handle

forward branches, and iii) speculative dataflow adopted by

block architectures that can execute backward and forward

branches.

The compound function unit approach fuses frequently

used operations but terminates the fusion at branches, lim-

iting offload granularity to basic blocks. Larger granularity

offloads can be constructed by either leveraging an OOO

processor’s branch predictor [24] or using apriori profiling

techniques with superblock construction. As observed by

prior work [30], such architectures (e.g., BERET [18])

when integrated with an out-of-order processor, require

frequent interactions with the processor and achieve low ILP.

The non-speculative dataflow approach is prevalent amongst

CGRAs that include support for predicating individual

operations. This design converts control flow into dataflow

dependencies through if-conversion and hyperblock formation.

Many challenges remain including support for speculating

on backward branches, conversion of nested ifs, occupation

of hardware resources, and lengthening of critical path [3].

Dataflow architectures such as TRIPS [42] target whole

programs and support forward and backward branches at

the expense of increased hardware complexity. The TRIPS

compiler relies on aggressive loop unrolling and flattening to

reduce backwards branches and removes forward branches by

Table I
CONTROL FLOW CHARACTERISTICS

Branch⇒Mem. Avg. mem ops dependent on a branch
1—10 10 Apps hmmer,lbm, crafty, bodytrack, mcf, fluidanimate,

ferret, sar-back, gcc
>10 8 apps gzip, blackscholes, h264ref, swaptions, vpr ,sar-

pfa-interp1, povray, sjeng .

Mem⇒Branch. Avg. mem ops a branch is dependent on.
1—10 11 apps art, parser, lbm, bodytrack, bzip2, freqmine, gcc,

h264ref, mcf, blackscholes, mcf
>10 7 apps crafty, gzip, vpr, sar-pfa, povray, swaptions, sjeng

Max. predication. #Bits required for hot path if-conversion
>100 13 apps povray,fluidaimate, bodytrack, ferret, hmmer,sar-

pf, art,crafty,fft-2d,sar-back, sjeng, swaptions,
bzip2,vpr.

Loops. Number of backward branches in hot function.
>10 14 apps streamcluster, art, gcc, ferret, blackscholes, mcf2k,

mcf2k6, hmmer, bodytrack, crafty, povray, swap-
tions, bzip2, vpr

forming hyperblocks. As a result of the increased hardware

complexity, TRIPS exhibits only a 9% improvement in energy

efficiency compared to an IBM Power4 superscalar processor

at roughly the same performance [14].

In the remainder of this section we summarize the chal-

lenges posed by control flow in real world programs. See

Section III for workload specific statistics. Table I summarizes

the number of predication bits required to if-convert the fully

inlined hottest function. Nine workloads required > 100 bits

of predication. Only four workloads required < 10 bits. Our

predication statistics differ from prior work [32] because of

aggressive inlining of call sequences. Prior work would need

inter-procedural analysis prior to if-conversion to reveal this

behavior. We studied the Hyperblock sizes for all the inner

loops in our function assuming two bits for predication [16].

We find that Hyperblocks only attain �2.2× the basic block

granularity. For four applications, sjeng, sar-pfa-interp1 and

swaptions, hyperblocks increased block size by 6.3×. Overall,

567

predication and Hyperblocks do not suffice to enlarge the

offload region granularity and minimize interactions with

the OOO processor. To understand whether speculation is

required, we look at individual branches and classify them

into two categories (see Table I) MEM-Branch (Ifs that

depend on memory operations) and Branch-MEM (Ifs

statements with memory operations dependent on the branch).

Either case could introduce serialization and loss of ILP. We

find that on average each branch includes > 10 memory

ops per branch in 8 applications (including floating point

intensive applications). In 18 workloads, the MEM-Branch

ratio is > 1 i.e., the branch depends on on at least one memory

access. Both these statistics highlight the need for accelerators

to implement a speculation framework including memory

operations like an OOO processor. However, implementing

hardware based speculation support is challenging in the

absence of a notion of instruction or program order in

dataflow accelerators. Thus we propose the use of software
based speculation, where the compiler automatically inserts

operations into the specialized region to support speculation

(See Section V for details). Furthermore, workloads display

varied characteristics and a unified hardware speculation

strategy may be a poor fit. To summarize:

1) Control dependencies limit the granularity of offload

to accelerators and hence require frequent switchbacks

to an OOO processor, reducing the energy benefits.

2) Real programs have nested control flow, many back-

ward branches and control interleaved with memory

operations necessitating speculative execution support

in accelerators.

3) Finally, some current accelerators rely on a OOO

processors to leverage speculation which makes it

challenging to enlarge the offload granularity.

4) Implementing speculation in accelerators is hindered by

the need for a complex hardware mechanism to perform

rollbacks which typically occur at fixed granularity.

Our Approach: NEEDLE adopts a software based specula-

tion approach to compile specialized regions for accelerators.

NEEDLE constructs atomic software frames from profiled

hot regions. NEEDLE’s LLVM framework extracts each hot

region into a separate “frame”, converting biased branches

along the path into guards [35]. NEEDLE generates the

necessary rollback operations in software which enables

workload tailored coarse-grained regions for offload. It

improves energy efficiency and minimizes reliance on the

OOO processor. NEEDLE supports full speculation, including

memory operations.

B. Compilers for VLIW processors
NEEDLE’s path-based offload region formation addresses

a problem that at the high level seems similar to VLIW

region formation strategies to handle control flow. Compilers

for VLIW processors [1], [26], [27] pioneered the use of

coarse-grained region formations by exploiting hardware

predication. Hardware accelerators [16], [32] have primarily

adopted “predication” to convert control flow dependencies

into dataflow dependencies. Specialized regions offloaded

to accelerators need to account for a large fraction of the

dynamic instructions in order to achieve energy efficiency

[19]. Our observations show, heuristic based region construc-

tion such as Superblocks [29] and Hyperblocks [27] targeted

towards VLIW processors may include infrequently executed

operations. It is unclear whether effective, coarse-grained

offload regions can be constructed by tuning the heuristics in

a manner independent of the accelerator and program control

flow.

����� ����� ����� ����� �����

��	�

����������

�� �� �� �� ���

��	���
 ��	���

����� ����� ����� ����� �����

��	�

����������

�� �� �� �� ���

��	���
 ��	���

NEEDLE TRACE
(40% coverage)

SUPERBLOCK
(0% Coverage)

HYPERBLOCK
(40% coverage + "Y=A" Wasted)

����� ����� ����� ����� �����

��	�

����������

�� �� �� �� ���

��	���
 ��	���

TA
K

E
N

B
L-P

A
T

H
S

N
O

T-
Ta

ke
n

B
L-

P
A

T
H

Figure 3. Superblock and Hyperblock construction for overlapped paths.
% indicates the relative frequency.

Superblock and Hyperblock Construction Challenges:
Some existing accelerators have sought to target offload

regions [18], [21] that are constructed from edge profiles of

branches. During offload region construction, a local decision

is made at each branch for which side of the branch to include.

In the presence of overlapping paths, edge profiles may yield

less than optimal results. Figure 3 illustrates such an example.

The edge profile will lead to a Superblock that will always
fail and trigger a side exit. Hyperblock construction may

recognize the lack of bias and fold in both sides. However,

this will lead to wasted blocks (since given A=0 the Y=A is

wasted). Using Ball-Larus path profiling [4] provides a precise

characterization of executed program paths. NEEDLE uses

Ball-Larus paths (BL-Path) as a building block for offloaded

regions. It is able to precisely identify the hottest path and

construct the accelerator offload without waste.

Challenges in Achieving High Code Coverage. : We find

5 benchmarks out of 29, 403.gcc, 181.mcf, 429.mcf, and

swaptions that demonstrate “infeasible” Superblock construc-

tion for innermost loops. In these cases, the constructed

Superblocks do not correspond to the actual paths taken by

the program. Overlapping paths misleadingly cause individual

block edges to become hot even though that particular

sequence of hot blocks may never appear in program

execution. Infeasible Superblocks degrade performance and

provide no acceleration coverage.

When Superblocks and Hyperblocks are feasible, they

still may not capture the hottest paths through the program.

The local branch edge profiles may skew the ranks of hot

basic block sequences, deprioritizing the offloading of hotter

program paths. Ranking the paths in order of frequency, we

find 6 workloads (453.povray, 458.sjeng, 181.mcf, bodytrack,

568

Figure 4. The distribution of biased branches in the application. Applications
not shown in the plot have 99% of the branches with each branch > 80%
bias.

Figure 5. Fraction of “cold” ops included in Hyperblocks.

swaptions and 401.bzip2) where the constructed Superblocks

are not the hottest path. This implies that there exists some

path for the same program region that is executed more

frequently than the Superblock.

Challenges in Heuristic Tuning: A key challenge for

compilers seeking to leverage dynamic profiles is the tuning

required for heuristic based approaches. To illustrate, we

summarize the branch biases (i.e, how often a branch is

taken) in the hottest function. The branch biases indicate to

the compiler which successor basic block of a branch should

be included (the taken or not-taken block). We find that in

many workloads, 15 of 29, individual branch biases can vary

significantly. Up to 24% of the branches have less than 80%

bias (see Figure 4). In such cases, it is not clear how to tune

the branch bias heuristic to achieve optimal coverage. Note

that Superblock and Hyperblock formation requires carefully

tuned heuristics [2], multiple metrics including resource

utilization and execution coverage need to be considered.

More important, the heuristic must understand how the

included blocks will interact with other included blocks and

the runtime behavior of shared branches in the offloaded

region. Figure 5 plots the number of operations that are part

of the Hyperblock but are “cold”, i.e infrequently executed.

For a hardware accelerator, such operations tend to waste both

1) resources leading to area penalty for custom circuit and/or

2) energy in reconfigurable accelerators. The Hyperblock

construction makes a local decision and thus may include

wasted operations (See Figure 3 for an example). Without

contextual program path information they may include blocks

without including the other basic blocks in the path.

Dynamic Compilation for Accelerators: Recent work has

studied dynamic compilation to target a CGRA [46]. They

however do not support control flow and map a single basic

block to the CGRA at a time [46] . Control flow speculation

is key to enabling coarse-grained regions that improve the

effectiveness of a dynamic compiler. NEEDLE focuses on

identifying such coarse-grained regions in programs.

III. BL-Path Accelerators
In this section we contrast the notion of a Ball-Larus

path (BL-Path) and contrast it against other region formation

strategies (e.g., Superblock or Hyperblock). We identify the

BL-Path characteristics that make them suited for accelerators.

In particular, the BL-Path approach will not encounter the

same challenge as Superblocks in Figure 3 since it identifies

not just the bias of the individual branch but the overall bias

of the code path to reach the branch. This leads to accurate

profiling of basic block hotness, formation of regions with

guaranteed coverage of dynamic execution by construction,

thus improving efficiency.

Ball-Larus path profiling [4] is used by NEEDLE to obtain

the initial set of acyclic candidate paths that summarize a

program’s dynamic behavior. The Ball-Larus method pre-

processes the control flow graph of a routine to replace loop

back edges with fake edges, one each from entry to back

edge target and from back edge source to routine exit. Paths

in the directed acyclic graph are enumerated bottom-up using

dynamic programming, leading to unique ids for each acyclic

path. Instrumentation is inserted to track which paths are

executed at runtime. The dynamic profile of executed paths

is collected, i.e for each unique path id we log the number of

times it has been executed. Each unique id can be decoded to

a sequence of basic blocks. We rank each uniquely executed

path and select most suitable candidates for acceleration.

NEEDLE extracts the blocks in the selected path(s) into an

offload function, adds support for software speculation and

prepares it for hardware accelerator synthesis.

A. Path Ranking
To rank the paths for hardware accelerators, we define a

new metric, path weight (Pwt). It captures both the execution

frequency of the path and number of operations. Eliding

instruction fetch is a primary source of energy efficiency in

hardware accelerators [19]. Maximizing Pwt maximizes energy

569

saved in the processor front-end. For the first order ranking

of paths our weight metric assumes that all instructions carry

the same weight, since instructions carry similar front-end

energy costs in a processor. Latency of each instruction can

be factored into the weight should the primary target be

performance rather than energy efficiency. We also calculate

Function Weight (Fwt), which accumulates all its constituent

Pwts. We present only the data for highest ranked function

by weight for the sake of readability.

To understand the potential implications of selecting a

frequency based metric, we profiled the time spent in the

hottest ranked path using Linux’s pprof (1500 samples/s)

versus its parent function. We computed Pwt/Fwt as well as

Psamples/Fsamples and compared the values as relative weights.

In 12 of the 29 workloads we study, the sampling based

profile indicated an average 10% increased weight; in 6

workloads we found a 15% decrease and in 4 workloads no

change. The variability in sampling based profiling reaffirms

our decision to use a frequency based metric that accounts

for the dynamic power of the front-end.

B. BL-Path Properties
In the remainder of this section we present the character-

istics of BL-Paths profiled across 29 workloads. Figure 6

shows the breakdown of dynamic instructions attributed to

the top five paths amongst all paths in the highest ranked

function. Table II presents the characteristics of the top five

highest ranked BL-Paths.

Figure 6. Path Coverage : Path weight (Pwt) by rank.

Few BL-Paths Enable High Coverage: Figure 6 shows

the coverage (Pwt) of paths in our workloads. The stacks

(bottom to top) represent the coverage of the highest to lower

ranked paths. The average coverage (fraction of dynamic

instructions) of the highest ranked BL-Path is 25%. In 18 of

29 applications the top path offers 20% or more coverage

(See Figure 6). The median coverage using top five paths is

86%. Thus reasoning about paths allows us to understand

the semantically different, yet frequent basic block sequences

executed by a workload. For instance, as shown in Figure 3,

it is desirable to precisely account for the frequency of the

taken and not-taken sides based on which path is invoking

the if-block.

BL-Paths Enable Coarse-Grained Offload (Table II:C3):
Table II:C3 shows the average size (number of instructions)

of the top five paths in the workloads. With a coarse-

grained offload region, more computation is performed on

the accelerator and fewer interactions with the host OOO

processor. Note that BL-Paths are acyclic; we investigate

techniques to enlarge them further in Section IV-B. The

median size across workloads is 65 operations. We have

highlighted the applications that had a large number of

branches in the path despite which the BL-Path was able to

construct regions with 80+ operations (outliers are swaptions

– 438 and 458.sjeng – 50). The highlighted values in C4

indicate workloads in which the BL-Path traverses many

branches. On 11 of the 29 workloads the highest ranked BL-

Path spans across �13 branches. Note that these sizes are

larger than those observed with edge-profiled Superblocks

in prior work [18]. An interesting workload is 401.bzip2,

where the number of instructions in the top five paths vary

significantly (29, 66, 371, 371, 194) with each path providing

small coverage of the overall (∑5 Cov. = 18). Table 1:C7

indicates the number of memory operations that are part

of the BL-Path and would be hoisted and become control

independent when software frames are formed. The circled

numbers highlight the workloads that benefit most from

memory speculation.

BL-Paths Have Overlapping Basic Blocks (Table II:C8):
A key concern with accelerator architectures is reusability

or recurrence of acceleratable sections in the program. Prior

work has evaluated this at the granularity of subgraphs

containing a few operations [10], [45]. Here we present

a methodical evaluation at the path granularity. Programs

often execute a large number of paths in the same region.

This often implies that many paths share common basic

blocks. For instance, at individual branch merge points (e.g.,

In Figure 1 E occurs along both the ABEF and ACEF paths

and F occurs along ABEF,ACEF and ACF). We quantify

the overlap of basic blocks across the top five paths in each

workload. Column C7 in Table II represents the average

(geomean) block overlap. In 10 out of the 29 workloads we

see that between 6–31 BL-Paths overlap (outlier: swaptions).

In the other 19 workloads at least 2 paths overlap. BL-Paths

enable precise accounting for common basic blocks.

Hardware overheads for BL-Path based accelerators
(Table II:C5 & C6): The number of live inputs and outputs

determine the amount of data transferred to and from the

accelerator. We summarize the results for the top five paths

in Table II:C5. These do not include the memory operations

within the accelerator. Some workloads may have compute

intensive regions with few live in and live out values (e.g.,

470.lbm, 175.vpr, 183.equake, 444.namd). The workloads

570

Table II
PATH CHARACTERISTICS

C1 : Exe. Paths C2 : ∑5 Cov.: Coverage of top 5paths C3 : Ins.
C4 : Branch C5 : Live Vals C6 : Phi ops cancel C7 : Mem.ops
C8 : # Overlapping paths

C1 C2 C3 C4 C5 C6 C7 C8

Name Exec ∑5 Cov. #Ins. ♦ ↓,↑ ��φ Mem Ov.

SP
E

C
IN

T
an

d
SP

E
C

FP 164.gzip 80 90 33 4 7 , 5 4 4 6

175.vpr 713 53 80 8 6 , 3 8 21 2

179.art 1446 74 24 2 3 , 4 2 7 12

181.mcf 48 87 30 2 5 , 3 2 7 2

183.equake 7 100 88 1 9 , 5 1 32 1

186.crafty 37K 23 49 7 8 , 3 7 4 31

197.parser 10 91 33 3 6 , 2 3 6 2

401.bzip2 54K 18 207 15 10, 6 15 29 15

403.gcc 21 89 43 4 7 , 5 4 6 3
429.mcf 41 88 21 2 4 , 2 2 6 2

444.namd 57 86 90 2 18, 10 2 14 2

450.soplex 67 93 33 2 7 , 3 2 7 3

453.povray 375 88 137 8 7 , 4 8 17 21

456.hmmer 61 100 105 6 12, 2 6 35 2

458.sjeng 45K 20 50 9 3 , 3 9 8 43

464.h264ref 43 80 49 4 11, 3 4 9 2

470.lbm 2 100 232 2 3 , 2 2 45 2

482.sphinx3 6 100 30 1 9 , 4 1 6 1

PA
R

SE
C

an
d

PE
R

FE
C

T blackscholes 42 37 380 19 9 , 1 19 0 11

bodytrack 732 43 68 4 10, 5 4 3 24

dwt53 12 100 28 1 6 , 2 1 6 1

ferret 556 20 98 9 7 , 6 9 2 10

fft-2d 29 87 38 2 6 , 3 2 4 2
fluidanimate 377 53 67 4 9 , 4 4 10 5
freqmine 22 64 31 2 6 , 4 2 10 2
sar-back. 539 14 85 9 7 , 5 9 6 3

sar-pfa-interp1 53 47 146 14 14, 3 14 8 8
streamcluster 42 98 35 3 6 , 4 3 6 2

swaptions 11K 50 438 29 9 , 3 29 32 138

with coarse-granularity offload (C3 highlighted) have an

average �10 live ins and �4 live outs). φ instructions in

LLVM correspond to selection operator and incur significant

hardware overhead [5]. When speculating on the control flow

in a BL-Path (see Section V), a frame is constructed, φs can

be removed. It is interesting that in 10 out of 29 workloads,

we remove multiple φs per branch. This implies speculation

on just a few branches we can significantly reduce hardware.

IV. BL-Path Expansion and Braids
In order to reduce execution migration between the host

and the accelerator, we explore two approaches to increase

the granularity of offload. BL-Path Expansion seeks to extend

acceleration across back edges of loops, while Braids combine

multiple paths for offloading.

A. BL-Path Target Expansion
BL-Paths are acyclic in nature. Sequencing paths across

backward branches is essential to loop pipelining and ex-

traction of data parallelism. Prior work [8], [28] has shown

that outer loop pipelining is critical to finding parallelism

in sequential programs. Acyclic regions superblocks and

hyperblocks encounter the same challenge and typically

attempt to grow in size via loop unrolling, branch target

expansion and loop peeling [29]. NEEDLE can construct

offload regions by sequencing multiple BL-Paths using

the dynamic execution profiles. We collected a path trace

(sequence of path ids) during the profiling phase of the

program. We then processed the trace and found that in many

cases applications demonstrate a bias for back-to-back paths.

We use the profile to guide which path to sequence next.
Table III

NEXT PATH TARGET EXPANSION

Path Seq. Bias +Ops Workloads
90-100% 68% 175.vpr 179.art 181.mcf 401.bzip2 403.gcc

429.mcf 444.namd 453.povray 456.hmmer
470.lbm 482.sphinx3 blackscholes dwt53 fft-
2d streamcluster

70-90% 2× 183.equake 450.soplex 464.h264ref
<70% 73% 164.gzip 186.crafty 197.parser 458.sjeng

bodytrack ferret fluidanimate freqmine sar-
backprojection sar-pfa-interp1 swaptions

We summarize the data in Table III. In 15 out of 29

workloads, a single path occurred in sequence more than 90%

of the time. Of these 10 workloads repeated the same BL-Path.

This enables us to enlarge the granularity of offload by a factor

of 2×. The remaining 5 workloads (*.mcf, 401.bzip2, 403.gcc,

blackscholes) where a different path follows in sequence we

were able to expand the offload by a further 17%. Overall,

the same path repeats in 17 out of 29 workloads, and the

average offload unit can be increased in size by 72%.

B. Braids – Merging BL-Paths
Each BL-Path offload targets a specific sequence of basic

blocks (which corresponds to a program path) with a single

flow of control; any deviation requires accelerator rollback.

Programs may have many paths which originate from the

same basic block. It is challenging to determine exactly

which path should be invoked. The penalty for invoking the

wrong accelerator is rollback. A promising approach would

be to merge paths to create a single offload unit. The key

questions are “which paths to merge?” and “how to merge

paths?”. We present a new offload region abstraction, Braids,

formed by merging BL-Paths thus achieving coverage equal

to the cumulative coverage of the BL-Paths. We analyzed

all the paths across our workloads and observed that in

many cases of overlap, in particular the paths had a common

start and end basic block. These paths diverged from the

same point in the program and then re-converged. Consider

Figure 7, the BL-Paths for this section are ABDGH and ABEGH
(all hot paths start at block A and exit at block H). We

construct a Braid by merging BL-Paths, and this requires the

introduction of multiple flows of control within the region.

Note that the Braids are acyclic and thus introduce only

forward branches. Braids include the basic blocks observed

to have been executed and guarantees monotonic increase

in coverage with each merged BL-Path. Braids are prevalent

571

in program loops that have multiple control flows within

the loop body. Since Braids only merge BL-Paths that share

the entry and exit block, live ins and live out values do not

change. This permits the accelerator to transparently switch

between the BL-Path or Braid configurations based on code

coverage and area tradeoffs.

A

B

D E

G

H

C F

I

Hot Traces
A,B,E,G,H
A,B,D,G,H

ABDC
FH

Hot Braid

A,B,[DE],G,H}

Basic blocks: A to I

HYPERBLOCK
AB,C,[DE],G,H,I

H
O

T

Z

C-D edge is cold, Z-C edge is hot.

COLD

(C will not increase coverage, but adds overhead)

Braids offload multiple hot BL-Paths beginning and ending with the same
basic blocks. In contrast, Hyperblocks also fold in cold blocks C and I.

Figure 7. Braid construction from BL-Paths

Relationship to Hyperblocks [27], Path-Trees [6] : Hy-

perblocks are an extension to Superblocks where basic block

successors to unbiased branches are merged for architectures

that support predicated execution. Braids are a specific type

of Hyperblocks that support multiple flows of control but

always exit from the same block on completion. The heuristic

based construction of Hyperblocks gives rise to multiple exits,

which makes it challenging to bound the construction process.

For example in Figure 7 the Hyperblock could include C.

Additionally, Hyperblocks needs “tail duplication” for block

F since it may merge paths that don’t exit at F. Path trees

are used by DySER [17]. In essence, they are Hyperblocks

constructed from path profiles rather than edge profiles. They

merge paths which originate from the same basic block and

diverge. In Braids, the biased branches are converted to guards

and enable speculation which is more energy efficient than

predication when successful. While path trees originate from

the same block, they may diverge to different basic blocks

and have different live out sets based on the exiting blocks.

Braids improve accelerator code coverage (see Ta-
ble IV:C3): We calculate the coverage-per-op (C3

C4) i.e., the

fraction of dynamic execution covered by each operation

in the Braid. This permits us to evaluate coverage by

neutralizing the effect of a larger region size. Constructing

Braids improved coverage-per-op for 17 applications (avg

0.85% of total dynamic execution per op). For 6 workloads

the Braids improves coverage but also substantially increases

the region size. For 444.namd, swaptions, 175.vpr, 470.lbm,

401.bzip, 186.crafty the BL-Path provided better coverage

per op; Braid provided better coverage overall.

It might be beneficial to look beyond the hottest path and

merge the lower-ranked paths to create hot Braids. This occurs

in cases (eg.175.vpr, fluidanimate and sar-backprojection)

where there is not much overlap between the hotter BL-Paths

Table IV
BRAID CHARACTERISTICS

C1 : Number of Braids C2 : # paths merger to create a Braid
C3 : Code coverage C4 : Ins. C5 : Guards i.e., branches removed
C6 : IFs; branches introduced when merging paths C7 : Live Vals

C1 C2 C3 C4 C5 C6 C7

#Braids #Paths
Braid Cov% #Ins. ♦ IFs ↓,↑

SP
E

C
IN

T
an

d
SP

E
C

FP 164.gzip 48 1.5 80 39 3 3 8 , 5
175.vpr 549 1.2 28 177 12 10 8 , 2
179.art 84 2.3 36 21 1 0 2 , 1
181.mcf 40 1.1 38 53 3 3 6 , 2
183.equake 8 1.0 77 144 1 0 14 , 8
186.crafty 388 2.0 6 28 5 0 6 , 3
197.parser 7 1.4 49 56 1 0 5 , 2
401.bzip2 3383 1.4 5 27 4 0 7 , 3
403.gcc 9 1.8 73 50 1 6 6 , 7
429.mcf 39 1.0 37 31 3 1 6 , 2
444.namd 51 1.1 42 229 1 0 36 , 16
450.soplex 47 1.3 57 30 2 0 5 , 3
453.povray 8 11.8 85 54 1 1 2 , 1
456.hmmer 47 1.1 85 61 2 0 16 , 1
458.sjeng 296 1.7 27 2272 36 115 3 , 3
464.h264ref 40 1.1 33 71 6 1 16 , 5
470.lbm 2 1.4 100 511 1 1 3 , 1
482.sphinx3 7 1.0 82 30 1 0 9 , 3

PA
R

SE
C

an
d

PE
R

FE
C

T blackscholes 4 5.3 52 381 16 8 9 , 1
bodytrack 19 6.0 27 45 4 0 12 , 2
dwt53 13 1.0 37 23 1 0 9 , 1
ferret 95 1.6 39 138 7 5 6 , 6
fft-2d 23 1.2 51 39 1 0 8 , 1
fluidanimate 74 1.3 25 117 8 8 4 , 4
freqmine 21 1.1 17 43 4 0 6 , 2
sar-backprojection 125 1.3 19 135 4 8 6 , 6
sar-pfa-interp1 9 2.0 88 344 14 14 14 , 3
streamcluster 31 1.2 91 47 4 0 5 , 2
swaptions 85 3.0 38 1704 82 42 9 , 3

but there is a lot of overlap in the lower-ranked BL-Paths

making them amenable for merging. NEEDLE provides a

methodical framework to reason about this tradeoff.

Fewer guards than BL-Path ⇒ Fewer speculation fail-
ures: When merging paths, Braids introduce multiple flows

of control within the region. This effectively reduces the

number of guards that would have otherwise been needed

by the constituent paths individually. On 12 applications

the Braids have 2× fewer guards than the hot BL-Path. The

reduction in guards directly correlates with how much overlap

is between the merged BL-Paths. Fewer guards mean that the

offloaded region into the accelerator is less likely to fail (see

Section VI for the details). Outliers, 458.sjeng and swaptions

increased the number of guards by 10× due to merging

paths with minimal overlap, but each with path having many

guards.

Braids enable memory speculation: The control depen-

dency enforced by the branch may limit memory level paral-

lelism available in the dataflow graph; eliminating branches

from the hot region will enable memory operations to

speculative execute. We find that in 14 workloads the hottest

braids have 0 memory operations dependent on a branch

(in comparison to 11; see Branch-Mem in Table Ib). The

number of workloads where the dependencies were greater

572

than 10 was reduced to 4 workloads. In 6 workloads (179.art,

186.crafty, 197.parser, 401.bzip2, bodytrack, freqmine) the

number of dependencies reduced to zero in the hottest Braid.

V. Execution Model

Undo log
0x2 : old val
0x3 : old val

....

PATH
P'

PATH
P

z = x + y
c = a + b
w = z + c

W > 10
Cold
Block

True

Load W
 S = W + 1

S = C + 1

Store S

Load P
Store W

P == 0
True False

w >
10?

Guards
z = x + y
c = a + b
w = z + c

p = load 0x1
=======

Store w, [0x2]

Frame

 Load w, 0x2
 s = w + 1
: s = c + 1

T :

FP
==

0?

======
Store s, [0x3]

G
ua

rd
 p

os
iti

on

x,y
a,b

Live
in

z,c
Live
out

Program

Figure 8. Frame construction from Braid.

In NEEDLE, candidate hot BL-Paths and Braids are

converted into software frames for offload to the accelerator.

They serve the same purpose as Traces within a Trace

Scheduling compiler [25] or Superblocks [29] and hardware

frames [39]. While Traces are multiple-entry, multiple-

exit regions, Superblocks and hardware frames [39] are

single-entry multi-exit regions with a single flow of control.

NEEDLE constructs single-entry single-exit regions but also

support multiple flows of control. Software frames are atomic

and coarse-grained, enabling effective speculative execution

on accelerators. Software frames consist of three components

(see Figure 8) the frame, a block of operations to run on

the accelerator, the guards consisting of the control flow

operations, and the undo log that captures values in locations

modified by the frame to revert in case of speculation failure.

All the branches within a frame (see ♦ W>10 in Figure 8)

are converted to guards. The compiler is permitted to move

instructions within the frame. When multiple paths are merged

to create a Braid (e.g., paths P and P’ diverging at p==0),

then the frame introduces multiple flows of control; we

rely on non-speculative predication [17] being available in

the accelerator. When a guard is triggered during a frame’s

execution, the externally visible state has to be reverted. Note

that no architectural state is shared between the frame and

OOO processor; live values and memory operations are the

only form of communication to and from the frame. NEEDLE
implements the rollback using a software undo log populated

by instrumenting stores.

When to invoke a BL-Path accelerator? : As program

execution approaches the entry basic block for the frame

(see Figure 8) it has to determine whether to invoke the

frame on the accelerator or to run on the host. Predicting

that the accelerated path may actually fail due to a guard

failure. This is challenging in BL-Paths since they may

include multiple guards, and if any fail, the entire frame

must be rolled back. This issue is not as critical to Braids
as they merge paths and reduce guards. To resolve this we

use an accelerator invocation history table that maintains

information on program branch history prior to the accelerator

path and determines whether the BL-Path accelerator should

be invoked. In our suite, 9 applications always invoked the

accelerator.

VI. Evaluation
We have developed a cycle accurate simulator that models

the host cores, the accelerator and data movement. The host

OOO core pipeline is modelled in detail using macsim [43].

We assume that the accelerator is uncore and transfers data

to the OOO core via the L2 cache. We model a CGRA fabric

similar to prior work [16], [33]. The CGRAs we model

are capable of issuing memory operations and are cache

coherent. We model the memory operations in detail. The

OOO assumes a perfect branch predictor, but the accelerator

simulation models guard failures and rollback overheads to

obtain a conservative estimate of speedup.

Table V
SYSTEM PARAMETERS

Host Core 1 GHz, Embedded. 4-way OOO, 96 entry ROB, 6 ALU,
2 FPU,
INT RF (64 entries), FP RF (64 entries)

L1 64K 4-way D-Cache, 2 cycles. LLC NUCA 8 banks, 20
cycles, MESI.

En. Mcpat [23]; ARM 1Ghz Template.
Coarse-Grained Reconfigurable Array (CGRA)

16×8 function units. 16 cycle reconfig. Energy Parameters (Dy-
namic) Network (12 pJ/switch+link), Function units (8 pJ/INT,
25pJ/FPU), 5pJ latch

A. Performance
NEEDLE automatically identifies and offloads coarse-

grained Braids to achieve a average performance im-
provement of 33% (max: 68%) across 29 applications.

We evaluate the performance of coarse-grained offload

regions (BL-Paths and Braids) that have been automatically
curated from large workloads using NEEDLE. Figure 9 shows

the improvement in performance (% reduction in cycle count)

for the highest ranked BL-Path and the highest ranked Braid.

For the BL-Path, we quantify the performance of a) an Oracle

predictor and b) a branch pattern based predictor (see § V).

The precision of the predictor is displayed on the Y-scale for

clarity and brevity.

The performance of the BL-Path offload is a tradeoff

between the expected benefit of offload versus penalty

of rollback on a guard failure. The penalty incurred in

terms of performance includes the cycles spent in the

accelerator as well the re-execution of the offload on the

host. The performance benefit gleaned from mining more

dataflow parallelism and eliding certain operations (e.g., bit

manipulation) may be squandered by overly greedy invocation.

573

Furthermore, many workloads have a small margin for error

due to the constrained nature of their dataflow graphs. In this

work, we explore the bounds of offload potential by assuming

a) guard failure detection only at the end of the accelerator

invocation and b) CPU re-execution of a failed BL-Path.

Overall, for offloading BL-Paths we see a mean perfor-

mance improvement of �24% across 24 applications. Five

paths suffer from performance degradation, with an average

of 7%. We discuss the results presented in Figure 9 with

respect to their workload characteristics.

High Potential (Predictable and High ILP): 1 Workloads

with high ILP and coarse offload regions (e.g., 470.lbm, ferret,

swaptions and sar-pfa-interp1) show significant performance

improvement (up to 68%). While some workloads may be

complex (e.g. swaptions with 11K paths), they demonstrate

regular predictable behaviour (avg precision 98%) that

translated to large gains as almost no work is wasted by wrong

path rollback. Other applications such as 179.art, 197.parser

are predictable, though they have lesser potential due to the

nature of the computation being inherently sequential.

Low margin for error: 2 403.gcc has no ILP that the

accelerator can take advantage of to improve performance.

Thus, the Oracle predictor does not improve performance,

and the branch history predictor degrades performance with

wasted rollback being executed on the CPU. 175.vpr suffers

from a similar problem due to the offloaded region being

only 7 operations in size; there is no performance benefit of

the accelerator. Though it is highly predictable (97%), the

rollbacks for the 3% of failed executions contribute to a net

2.2% degradation.

Pathological unpredictability: 3 Due to a combination of

data dependent loop branches and aggressive loop unrolling

(4×) freqmine, bodytrack and blackscholes degrade perfor-

mance, as the branch history patterns are insufficient. One

possible approach to mitigate the issue would be to use loop

fission to segregate unrolled iterations where the loop bounds

are determined by data dependent values.

For Braids, we observe a mean 33% performance
improvement. Note, there is low potential for degradation,

as Braids have fewer guards than paths and include control

flow in the offload via if-conversion. In all but one workload

(sar-pfa-interp1), the highest ranked Braid provides equal or

greater performance than a BL-Path with the Oracle predictor.

In this workload, the BL-Path and Braid target different code

regions with varying ILP.

Apples to Oranges: 4 sar-pfa-interp1 is one of the 3

workloads where the highest ranked BL-Path is not part

of the highest ranked Braid. This implies that the coverage

of lower ranked BL-Paths contribute to an overall higher

ranked Braid. In this case, the Braid has more than 2× the

number of operations and provides a higher overall energy

reduction (88% vs 79%) for the BL-Path. NEEDLE provides

a systematic approach to study offload granularity.

B. Energy Evaluation
NEEDLE constructed Braids in a programmer inde-

pendent, automated fashion which reduced the energy
consumption by 20%. Figure 10 shows the net energy

improvement for offloading Braids. While the performance

improvements that can be obtained from coarse-grained

offloading depend on the criticality of the dataflow graph,

energy consumption can be reduced on a per operation basis

due to the elimination of a processor front-end. We present

only Braids in this section due to their higher performance and

simplicity. We present net reduction for the entire workload

region (hottest function) in contrast to the Braid only to

highlight the utility of our tool.

The coverage of the Braid is indicated on top of each

bar. The reduction in energy consumption is commensurate

with the coverage apart from a couple of application pairs.

1

2

3
4

Figure 9. Performance Improvement

574

Figure 10. Net Energy Reduction for Braid

For 453.povray and 456.hmmer, the coverage is the same

however the net energy reduction for 456.hmmer is lower.

ferret has higher coverage than dwt53 yet has a lesser impact

on energy reduction. Both pairs are due to the increased

dataflow graph dependencies (2× in ferret ↔ dwt53) and

(1.4× in 453.povray ↔ 456.hmmer).

While 401.bzip2 comprises > 3K Braids, we find a

single Braid (5% coverage) reduces energy by 2.7% overall.

Similarly, just one Braid for 186.crafty reduces energy by

2×. Both these Braids offer much larger energy reduction

per coverage than other workloads. The other workloads that

demonstrate similar behavior are fluidanimate, freqmine and

sar-backprojection. In general, floating point workloads enjoy

larger reductions in energy consumption due to reduced cost

of floating point operations on the spatial fabric as well as

simpler control flow structure.

HLS for NEEDLE identified Braids: NEEDLE also enables

high level synthesis tools [9] to target irregular workloads.

We target a Altera Cyclone V SoC Processor/FPGA that

combines dual ARM cores with a tightly coupled FPGA

fabric. We synthesize both BL-Paths and Braids. Data can be

moved between the ARM cores and the FPGA through the

cache coherent AXI bus, and the memory maps permit us to

share up to 1GB of coherence space between the core and the

FPGA. Our backend RTL generator includes support for only

a subset of the LLVM IR (v3.8). We use this infrastructure

for functional testing of the hardware accelerators and area

tradeoff analysis.

We synthesize RTL for 22 workloads from NEEDLE
identified hot Braids. We target an Altera Cyclone V SoC

device and find that for all but four workloads, the Adaptive

Logic Modules used is less than 20% (total �85K). For

these workloads the average is 38%, max utilization is for

470.lbm (72%) where double precision floating operations

are used. Modelsim simulations for power revealed that apart

from three workloads all others consumed 5–60mW. The

remaining three consumed 80mW, 175mW and 305mW for

444.namd, 470.lbm and swaptions respectively.

VII. Conclusion
NEEDLE is a automated tool chain that enables precise

profiling, selection, and construction of “accelerator-friendly”

regions. NEEDLE is independent of accelerator architecture

and released as free and open source software. We introduce

a new program path abstraction, “Braids”, that merges paths

with many common basic blocks to help increase accelerator

code coverage without impacting the hardware complexity

and energy efficiency. Finally, we use Braids to enable

energy efficient software speculation on accelerators. Overall,

we enable offload of irregular workloads to accelerators

and achieve a 34% improvement in performance and 20%

reduction in energy.

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.

Conversion of control dependence to data dependence. In
PROC. of the 10th POPL, 1983.

[2] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W.-
m. W. Hwu. Integrated predicated and speculative execution
in the IMPACT EPIC architecture. In PROC of the 25th ISCA,
1998.

[3] D. I. August, W.-m. W. Hwu, and S. A. Mahlke. A framework
for balancing control flow and predication. In PROC of the
30th MICRO, 1997.

[4] T. Ball and J. R. Larus. Efficient Path Profiling. In PROC of
the 1996 MICRO, 1996.

[5] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam. Design, integration
and implementation of the DySER hardware accelerator into
OpenSPARC. PROC of the 18th HPCA, pages 1–12, 2012.

[6] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam. Design, integration
and implementation of the DySER hardware accelerator into
OpenSPARC. PROC. of the HPCA, pages 1–12, 2012.

[7] D. Bryant. Disrupting the data center to create the digital
services economy. 2014.

[8] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein.
Spatial computation. In PROC of the 11th ASPLOS, 2004.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. Legup: high-level
synthesis for fpga-based processor/accelerator systems. In
PROC. of the 39th FPGA, pages 33–36. ACM, 2011.

[10] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner.
Application-Specific Processing on a General-Purpose Core
via Transparent Instruction Set Customization. In PROC of
the 37th MICRO, 2004.

[11] M. U. Farooq, L. John, and M. F. Jacome. Compiler Controlled
Speculation for Power Aware ILP Extraction in Dataflow
Architectures. In Proc. of 4th HiPEAC, 2008.

[12] E. Fluhr, S. Baumgartner, D. Boerstler, J. Bulzacchelli,
T. Diemoz, D. Dreps, G. English, J. Friedrich, A. Gattiker,
T. Gloekler, et al. The 12-Core POWER8 Processor with
7.6 Tb/s IO bandwidth, Integrated Voltage Regulation, and
Resonant Clocking. 2015.

[13] C. Frericks, R. Cofell, and K. Sankaralingam. Performance
evaluation of a DySER FPGA prototype system spanning

575

the compiler, microarchitecture, and hardware implementation.
2015.

[14] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill,
S. W. Keckler, D. Burger, and K. S. McKinley. An evaluation
of the TRIPS computer system. In PROC of the 14th ASPLOS,
2009.

[15] C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-
González, and L. Eeckhout. Automatic design of domain-
specific instructions for low-power processors. In PROC. of
ASAP, pages 1–8, 2015.

[16] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim. Dyser: Unifying functionality
and parallelism specialization for energy-efficient computing.
IEEE Micro, 32(5):0038–51, 2012.

[17] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically
Specialized Datapaths for energy efficient computing. In PROC
of the 17th HPCA, 2011.

[18] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August.
Bundled execution of recurring traces for energy-efficient
general purpose processing. In PROC of the 44th MICRO,
2011.

[19] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz.
Understanding sources of inefficiency in general-purpose chips.
In PROC of the 37th ISCA, 2010.

[20] M. Hill and C. Kozyrakis. Advancing computer systems
without technology progress. In DARPA/ISAT Workshop, 2012.

[21] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia,
L.-N. Pouchet, A. Rountev, and P. Sadayappan. Dynamic
trace-based analysis of vectorization potential of applications.
In PROC. of the PLDI, 2012.

[22] S. Kumar. Needle on github.
[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,

and N. P. Jouppi. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In PROC of the 42nd MICRO, 2009.

[24] F. Liu, H. Ahn, S. R. Beard, T. Oh, and D. I. August.
Dynaspam: dynamic spatial architecture mapping using out
of order instruction schedules. In PROC. of the 42nd ISCA,
pages 541–553, 2015.

[25] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. O’Donnell, and J. Ruttenberg.
The multiflow trace scheduling compiler. The Journal of
Supercomputing, 7(1-2), May 1993.

[26] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and
W.-m. W. Hwu. A comparison of full and partial predicated
execution support for ILP processors. In PROC of the 22nd
ISCA, 1995.

[27] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. Effective compiler support for predicated
execution using the hyperblock. In PROC of the 25th MICRO,
1992.

[28] D. S. McFarlin, C. Tucker, and C. Zilles. Discerning the
dominant out-of-order performance advantage: is it speculation
or dynamism? In Proc. of the eighteenth ASPLOS, 2013.

[29] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The
superblock: An effective technique for vliw and superscalar
compilation. THE JOURNAL OF SUPERCOMPUTING, 7:229–
248, 1993.

[30] T. Nowatzki, V. Gangadhar, and K. Sankaralingam. Exploring
the potential of heterogeneous von neumann/dataflow execution

models. In PROC of the 42nd ISCA, New York, New York,
USA, June 2015.

[31] T. Nowatzki, V. Govindaraju, and K. Sankaralingam. A
Graph-Based Program Representation for Analyzing Hardware
Specialization Approaches. IEEE Computer Architecture
Letters, 2015.

[32] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago,
D. Lustig, V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. All-
mon, R. Rayess, S. Maresh, and J. Emer. Triggered instructions:
a control paradigm for spatially-programmed architectures. In
PROC of the 40th ISCA, Apr. 2013.

[33] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array:
a flexible multicore accelerator with virtualized execution for
mobile multimedia applications. In PROC of the 42nd MICRO,
2009.

[34] Y. Park, H. Park, and S. Mahlke. CGRA Express: Accelerating
Execution Using Dynamic Operation Fusion. CASES ’09.
2009.

[35] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and
branch prediction in dynamic ILP processors. In PROC of the
21st ISCA, 1994.

[36] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. Prashanth, G. Jan, G. Michael, H. S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope,
A. Smith, J. Thong, P. Yi, and X. D. Burger. A reconfigurable
fabric for accelerating large-scale datacenter services. In
Proceeding of the 41st Annual International Symposium on
Computer Architecuture, 2014.

[37] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. Horowitz. Convolution Engine: Balanc-
ing Efficiency & Flexibility in Specialized Computing. PROC
of the 40th ISCA, pages 1–12, Apr. 2013.

[38] B. Reagen, R. Adolf, S. Y. Shao, G.-Y. Wei, and D. Brooks.
Machsuite: Benchmarks for accelerator design and customized
architectures. In IEEE International Symposium on Workload
Characterization (IISWC), 2014.

[39] S. S. L. Sanjay J Patel. rePLay: A Hardware Framework
for Dynamic Program Optimization. IEEE Transactions on
Computers archive. Volume 50, 1999.

[40] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. M. Brooks. Aladdin:
A pre-RTL, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In
Proc. of the 41st ISCA, pages 97–108, 2014.

[41] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
and E. M. C. Filho. MorphoSys: an integrated reconfigurable
system for data-parallel and computation-intensive applications.
IEEE Transactions on Computers, 49(5):465–481, May 2000.

[42] A. Smith, J. Gibson, B. A. Maher, N. Nethercote, B. Yoder,
D. Burger, K. S. McKinley, and J. H. Burrill. Compiling for
EDGE Architectures. PROC. of the CGO, 2006.

[43] G. Tech. Macsim : Simulator for heterogeneous architecture -
https://code.google.com/p/macsim/.

[44] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: reducing the energy of mature computations. In PROC
of the 15th ASPLOS, 2010.

[45] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata,
M. B. Taylor, and S. Swanson. Qscores: Trading dark silicon
for scalable energy efficiency with quasi-specific cores. In
PROC. of the 44th MICRO, 2011.

[46] M. A. Watkins, T. Nowatzki, and A. Carno. Software transpar-
ent dynamic binary translation for coarse-grain reconfigurable
architectures. In PROC. of the 21st HPCA, 2016.

576

