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ABSTRACT

Recent research [3, 37, 38] has proposed compute accelerators to
address the energy efficiency challenge. While these compute ac-
celerators specialize and improve the compute efficiency, they have
tended to rely on address-based load/store memory interfaces that
closely resemble a traditional processor core. The address-based load-
/store interface is particularly challenging in data-centric applications
that tend to access different software data structures. While acceler-
ators optimize the compute section, the address-based interface leads
to wasteful instructions and low memory level parallelism (MLP). We
study the benefits of raising the abstraction of the memory interface
to data structures.

We propose DASX (Data Structure Accelerator), a specialized state
machine for data fetch that enables compute accelerators to efficiently
access data structure elements in iterative program regions. DASX
enables the compute accelerators to employ data structure based mem-
ory operations and relieves the compute unit from having to gener-
ate addresses for each individual object. DASX exploits knowledge
of the program’s iteration to i) run ahead of the compute units and
gather data objects for the compute unit (i.e., compute unit memory
operations do not encounter cache misses) and ii) throttle the fetch
rate, adaptively tile the dataset based on the locality characteristics
and guarantee cache residency. We demonstrate accelerators for three
types of data structures, Vector, Key-Value (Hash) maps, and BTrees.
We demonstrate the benefits of DASX on data-centric applications
which have varied compute kernels but access few regular data struc-
tures. DASX achieves higher energy efficiency by eliminating data
structure instructions and enabling energy efficient compute accel-
erators to efficiently access the data elements. We demonstrate that
DASX can achieve 4.4⇥ the performance of a multicore system by
discovering more parallelism from the data structure.

1. Introduction
Accelerators are gaining importance as energy-efficient computa-

tional units due to the breakdown of Dennard scaling. However, these
accelerators continue to rely on traditional load/store interfaces to ac-
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__global__ void vsadd_kernel( int y[], int a ) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = y[idx] + a;

}
...
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// move data from CPU to GPU
vsadd_kernel <<<32,n/32>>>( y, a );
// move data from GPU to CPU

}
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Left: Multicore processor. Right: DASX integrated with the shared LLC
(NUCA tiles not shown). In multicore, instruction regions show instructions
eliminated by DASX. Broken lines indicate data transfers eliminated by
DASX.
Figure 1: DASX Overview. Accelerating an iterative computation on
an array.

cess data. For example, recent proposals that advocate specialization
(e.g., Conservation cores [38] and Dyser [3]), as well as past work in
kilo-instruction processors [32] have all had to contend with power
hungry load/store units [33]. Even large (e.g., 256 entry) load/store
queues can sustain only a few (10s of) cache refills [33] which falls
short of the requirements for kernels that stream over large data struc-
tures. A promising avenue of research is to improve the efficiency of
data accesses via hardware acceleration using techniques such as spe-
cialized ISA extensions [40], and customized hardware (e.g., SQL-
like language constructs [12] and hash lookups [19]).

A key application domain seeking to use compute accelerators are
data centric applications that perform iterative computation over large
data structures [30]. Unfortunately, the conventional address-based
load/store interface does not scale to exploit the available memory
bandwidth and expends significant energy on instructions required to
fetch the objects from within the data structure. The main benefits
of parallelizing datacentric applications come from fetching multiple
data objects simultaneously and hiding long memory latencies. Paral-
lelization with threads can increase the number of memory accesses
issued and improve the MLP, however as our evaluation shows, in-
creasing MLP (memory-level-parallelism) using the same thread as
the compute kernel is energy inefficient.

Our work makes the key observation that by raising the abstraction
of the memory interface from addresses to object indices (or keys),
we can enable a high performance (i.e., more MLP) and energy ef-
ficient data-structure specific memory interface for compute acceler-
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ators. We propose DASX (Data Structure Accelerator), a hardware
accelerator that integrates with the LLC and enables energy-efficient
iterative computation on data structures (see Figure 1). Supporting
iterative computation requires DASX to adapt to the locality require-
ments of the compute kernel and effectively supply data as the com-
pute kernel streams over the entire dataset. Inspired by the decoupled
access-execute paradigm [36], DASX partitions iterative computation
on data structures into two regions: the data collection and the com-
pute kernel. Figure 1 illustrates an example of an iterative computa-
tion on an array. Since DASX removes the data structure instructions
from the compute kernel, it also eliminates complex address genera-
tion logic from the compute unit which instead interfaces with mem-
ory by issuing loads and stores to object keys (unique identifiers for
each object). It uses specialized hardware to translate object keys to
memory addresses, and issue the requests.

DASX relies on the observation that the MLP available in data
structures is independent of ILP and TLP limitations. DASX em-
ploys a novel data structure-specific controller (Collector) to traverse
the data structure, mine the MLP, and stage the corresponding cache
lines in the LLC until the compute unit consumes the data. In this
paper, our compute unit is a PE (processing element) array, a set of
light-weight in-order cores that execute data parallel loop iterations.
The PEs operate on the data objects in the Obj-Store supplied by the
Collector and do not generate addresses. DASX is aware of the com-
pute iterations and appropriately tiles the data to fit in the LLC to
prevent thrashing. The Collector is aware of the organization of the
data structure and runs ahead of the compute kernel so as to prefetch
the objects to hide memory latency. Overall, DASX eliminates the
instructions required for the data structure accesses (bold instructions
in Figure 1), eliminates data structure transfers over the cache hier-
archy (broken lines in Figure 1), and runs the compute kernel on the
lightweight PE.

We evaluate DASX using a variety of algorithms spanning text
processing, machine learning and data analytics, and accelerate three
types of data structures: Vector, Hash Table, and a BTree. Relative
to a multicore system (2 cores, 4 threads per core), DASX improves
performance by 4.4⇥, reduces core energy consumption by 27⇥ and
reduces cache hierarchy energy by 7⇥. Overall, DASX has the po-
tential to improve the efficiency of language-level data structures and
idioms such as list and map by exploiting the parallelism implicit in
the data structures that is often lost in the implementation due to the
address-based memory interface of the processor core that requires
many instructions to fetch a single object. Our contributions are:

• DASX exposes MLP available in data structures and uses spe-
cialized hardware, the Collector, to access data using object
keys. Other specialized programmable co-processor [3, 18, 37,
38] approaches can also use the Collector to achieve high MLP
and energy efficiency.

• DASX targets iterative computation and leverages data structure-
awareness to run far ahead of the compute kernel and prefetches
data to improve performance.

• DASX exploits information about compute iterations to guar-
antee that the data is cache-resident until the kernel finishes
processing and efficiently drives the compute kernel based on
the presence of data in the cache.

2. Background and Motivation
In this section we discuss the overheads associated with software

data structures using Blackscholes [5] with unit stride vectors as an
example. Figure 2 illustrates the compute kernel from Blackscholes.
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               are vectors of length nOptions. 
compute_d1(),compute_d2() are re-entrant. Loop is data parallel.
for i:= 0 to nOptions do
    d1 = compute_d1(volatility[i],time[i],spot[i],strike[i],rate[i]);
    d2 = compute_d2(volatility[i],time[i]);
    prices[i] = CNF(d1)*spot[i]-CNF(d2)*strike[i] *exp(-rate[i]*time[i])
end for

Figure 2: Blackscholes [5] Kernel.

The program kernel reads in a list of “options” data stored across six
C++ STL vectors (spot[], strike[], rate[], volatility[],

time[], and type[]) and calculates the pricing (prices[]).
Note that the use of vector data structures gives rise to easily acces-
sible MLP, but the compute kernel itself could include dependencies
that limit parallelization and SIMDization. Figure 2 also shows the
execution on a typical general-purpose processor. Every iteration re-
quires 6 add and 6 load instructions (for generating the load slice),
and 1 add and 1 store instruction. As the compute kernel streams
over the 6 data structures it is also imperative to ensure that i) the ele-
ments are fetched into the cache ahead of the iteration that needs them
and ii) the elements continue to reside in the cache until the corre-
sponding iteration finishes processing them. The former requires the
processor to aggressively fetch data into the caches while the latter
requires the processor to fetch conservatively so as to not thrash the
caches. Finally, the memory interface needs to be flexible to enable
access to multiple independent data structures (6 read-only data struc-
tures and 1 read/write) and possibly multiple elements from the same
data structure. The energy inefficiencies of general-purpose proces-
sor tend to be more acute with complex key-value based hash tables
and pointer- based trees/graphs. Even a simple strided iteration incurs
significant address generation overheads.

Benchmark % Time % DS Ins. % INT % BR % MEM
Blackscholes 99.7 9 13.3 13.5 26.6
Recomm. 44.6 65.9 26.9 6.4 51.9
2D-Datacube 34.1 14.3 32.8 12.3 54.7
Text Search 64.7 30.9 32.6 14.1 53.1
Hash Table 25.9 34.7 34.1 17.0 48.7
BTree 100 63.7 32.7 15.7 51.5
Table 1: Data structure usage in Data-centric Applications

Table 1 shows the % execution time, % data structure instructions
and the breakdown of instructions1 in the benchmarks. Overall in
our application suite, between 25—100% of the time is spent in op-
erations iterating over the data structures. The number of instruc-
1We used gcc -OO optimization to enable us to identify STL library calls in
the binary and use pintool to profile. Our performance evaluation builds with
-O2.
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tions spent on data structures can be significant (up to 66% in Rec-
ommender) and contribute to dynamic power consumption. In data
structures such as HashTable and BTree, the value of the data element
determines the control flow and involves many branches (15.7%-17%
of total instructions). Condition checks can constitute up to a 2⇥
overhead in data traversals [27]. Additionally, compute kernels in dif-
ferent applications may exhibit significant diversity in temporal and
spatial locality even when accessing the same type of data structure
(e.g, vector) which requires the data structure accesses to be carefully
managed to ensure optimal cache behaviour. The parallelism avail-
able from the data structure can differ from the parallelism available
in compute kernel. Consider a reduction operation (SN

i=1A[i]), even
though the compute region’s parallelism is limited, the data structure
itself is embarrassingly parallel and exploiting the available MLP will
improve overall speedup. To summarize:

• Programs may spend significant time performing iterative com-
putations on data structures. Overall, removing the data struc-
ture instructions will improve energy efficiency.

• Even if compute parallelism is limited(e.g. reduction), we can
exploit the MLP to reduce the average memory access latency
and improve performance. We need to develop scalable energy
efficient techniques to extract the available MLP.

• The implementation of the memory interface needs to be flex-
ible and adapt to compute kernels with varied temporal and
spatial locality.

3. DASX: Data Structure Accelerator
DASX consists of two components (Figure 3): i) An array of pro-

cessing elements (PEs), each PE is an in-order core running the com-
pute kernel (§ 3.1) and ii) a data-structure specific refill engine, the
Collector (§ 3.2). The PEs only access data elements using data
structure based memory operations. The PEs share a common ob-
ject cache, Obj-Store. The Obj-Store (object-cache) holds the data
elements needed to execute and is explicitly managed by the Col-
lector which ensures the data structure memory operations do not
miss in the Obj-Store. The Collector translates object keys to ad-
dress locations and manages data fetches needed by the compute ker-
nel. The PEs do not perform address generation and do not require
miss-handling logic. We begin with a description of the data structure
memory operations to help the reader understand the design require-
ments of the Collector.

3.1 Processing Elements

Table 2: Special instructions and registers
Special Registers

%CUR contains the compute cursor (the loop trip count)
%BAR synchronization barrier across PE array

Special Instructions
Type Instruction Description
Mem LD [Key],%R load key from Obj-Store.

ST [Key],%R store key from Obj-Store.
Loop NEXT Advance cursor and trigger a refill

of the Obj-Store.

The PE array consists of a set of light-weight 32 bit in-order, 4-
stage integer/floating-point pipelines. All the execution pipelines share
both the front-end instruction buffer (256 entries) and the back-end

Obj-Store. The memory operations only access the data in the Obj-
Store which is loaded in bulk by the Collector. Each execution pipeline
has 32 integer and 32 floating point registers. Within our framework
each PE’s pipeline runs an instance of the compute kernel; most im-
portantly each PE has its own PC and is capable of taking a different
branch path within the iteration. Table 2 shows the special instruc-
tions added to support DASX. The load and store operations access
data structures using a unique identifier (the key) and the PE’s cursor
indicates the loop trip count of the compute kernel. All PEs sync up
at a barrier after performing the set of iterations statically assigned
to the PE array. The PEs do not communicate with each other ex-
cept via loads/stores to the data structure. The number of execution
pipelines depends on the bandwidth of the shared front end and Obj-
Store; with the MLP extracted by the Collectors, we find that limited
compute parallelism(4—8 PEs) is sufficient (see § 4.5). The key to
DASX’s performance improvement is the MLP exploitation using the
Collector.

Key-based loads and stores (PE$Memory interface)

DASX raises the abstraction of the memory interface from ad-
dresses and the compute PE accesses elements in the data structure
through keys. The key is an index to identify a particular element in
the data structure. A unique key value is associated with every ele-
ment in the data structure. Some of the key values may be implicit
(e.g., array index) while others may be explicit (e.g., hash table). The
unique identification provides a name space with which the compute
units can indicate the load/store slices to the Collector. With contain-
ers such as arrays/vectors, key refers to the index of the element. For
a hash table, key refers to the search key and with structures like the
BTree, the key is a unique integer. All the address generation logic is
centralized in the Collector and is data-structure specific. Using keys
to access data elements allows DASX to eliminate data structure in-
struction, specialize the address generation logic to reduce overhead
and extract memory level parallelism implicit in the data structure.
Further benefits include the ability for DASX to coalesce and amor-
tize the cost of address generation and virtual-to-physical translation
for multiple objects in the same data structure. The key-based mem-
ory operations access data from the Obj-Store.

Obj-Store

The Obj-Store shared between the PEs serves as a data store for el-
ements from the data structure. The PE accesses the Obj-Store using
key-based memory instructions. When starting a set of iterations the
Collector performs a bulk refill of the Obj-Store. The Obj-Store does
not encounter misses and is explicitly managed by the Collector. The
main utility of the Obj-Store is to provide a flexible interface to ac-
cess the data structure elements without requiring the PEs to generate
addresses. In addition, the Obj-Store also captures the locality within
an iteration and filters small width (4-byte) accesses from the LLC to
save energy. Obj-Store is organized as a fully associative decoupled
sector-cache [34] with a sector size of 4 bytes (8 sectors/line) [24] and
32 tag entries (Figure 4). The decoupled sector organization provides
the following benefits : i) by varying the number of sectors allocated
data objects of varying length are supported ii) the small sector sizes
(4 bytes) support structures of primitive type (e.g., array of floats), iii)
tag overhead is minimized. The tag stores the Collector id dedicated
to the data structure and up to 8 adjacent keys. When the compute
iteration completes execution, the Obj-Store flushes the dirty objects
back to the LLC triggering any required coherence operations. Write-
backs use the LLC backpointer in the Obj-Store entry (Figure 4); the
backpointer is set when the Collector loads the Obj-Store.

3
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3.2 Collector

The Collector is a data-structure specific refill engine. A Collector
has three tasks, i) it decodes the load and store slices , ii) translates
the object keys to addresses and fetches them into the LLC and iii)
it explicitly manages the Obj-Store. The Collector writes back data
from the Obj-Store and refills it, setting up the appropriate tags and
Obj-Store lines at the beginning of each set of iterations. To supply
data objects to the PEs the Collector runs ahead and fetches the cache
lines corresponding to the objects and locks the LLC lines until the
compute kernel has processed the objects.2 The accelerators do not
need to perform address-generation or miss-handling since the Col-
lector ensures the data is present in the Obj-Store for the duration of
the computation. Before we discuss the details of individual Collec-
tors, we illustrate the overall working of DASX with Blackscholes.

Illustration: Blackscholes Execution on DASX

In Blackscholes, the load slice consists of elements from the vec-
tors spot[], strike[], rate[], volatility[], time[] and type[] while the
store slice consists of elements from price[] (see Figure 2); all vec-
tors employ a unit stride. Figure 5 (Left) illustrates the programmer’s
C++ API for DASX. new coll(..) initializes a new Collector
and specifies the data structure parameters; specific details of each
Collector are discussed in the next section. group.add(..) binds
Collectors together to run in lock-step fetch elements from different
data structures needed by a specific iteration. The need to run Collec-
tors in a synchronized fashion is described in § 3.3. In this example,
a Collector is initialized for each vector accessed in the compute ker-
nel.

For this example, we assume 8 PEs and a 1KB Obj-Store. Each
iteration requires space for 4⇥5 (floats) + 1 (char) + 4 (float) = 25
bytes. The 1 KB Obj-Store can hold data for 40 iterations of the

2To ensure deadlock-free progress for the CPU cores we ensure that at least
one way per set in the LLC remains unlocked.

Blackscholes kernel. The loop is unrolled with each PE executing a
single iteration of the compute kernel; PEs sync up after each itera-
tion. A group of iterations processing the data held in the Obj-Store is
called a tile. The DASX software runtime loads the VEC descriptor
for each of the vectors being accessed and invokes DASX by setting
the memory mapped control register.

Figure 5 illustrates the steps involved in the execution of Blacksc-
holes on DASX. The Collectors issue requests to DRAM ( y3 ) for the
first tile while the PEs are stalled. Subsequent DRAM requests over-
lap with execution of the PEs. The Collectors use some of the ways
in each set of the last level cache to prefetch and “lock” ( y4 ) in place,
data which will be consumed by the PEs in the future. Locked cache
lines may not be selected for replacement. The Collectors load the
tile of data into the Obj-Store ( y1 ) and the PEs commence execution
of a group of concurrent iterations ( y2 ). For Blackscholes, 40 itera-
tions of the original loop consumes all the data in the Obj-Store. The
Collectors then write back the dirty data, unlock the cache lines ( y5 )
and initiate a refill ( y3 ) of the Obj-Store. We implement LLC line
locking using a logical reference counter (Ref.# in Figure 5). The
Ref.# is set to the number of data objects in the LLC line needed by
the computation. The Ref.# is zeroed out when the tile of iterations
complete execution.

Overall, the key performance determinant is the ability of the Col-
lector to generate addresses and run ahead to fetch the cache lines
corresponding to the object keys. The logic required to generate ad-
dresses from the object keys is dependent on the type of Collector.

3.3 Types of Collectors

The DASX system evaluated includes three types of Collectors,
VEC (vector/array), HASH (hash-table) and BTREE. Each Collector
includes a data structure descriptor that contains information to en-
able the Collector to fetch and stage data independent of the compute
kernel.

Vector Collector (VEC)

Figure 6 shows the descriptor that software needs to specify for
vectors. The Keys/Iter. specifies the per-iteration load slice of the
particular vector. For instance, in Blackscholes (see Figure 2), each
of the vectors are accessed with a unit stride i.e., in the ith iteration
accesses the ith element. The Keys/Iter is a single entry with offset 0.
The descriptor limits the number of vectors accessed per-loop itera-
tion (8 in this paper). The descriptor for spot[] in Blackscholes would
be: <LD,&spot[0], FLOAT (4 bytes), nOptions (length of vector), [0]
(unit stride access) >. The address generation to map data structure
keys to cache block addresses is simple and shown in Figure 6.

4
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Hash-Table Collector (HASH)

The hash Collector we study in this work supports only lookups
similar to [19]; we use the general purpose processor to perform
insertions. We only support a fixed organization for the hash table
with fixed-size keys (128bits) and three data slabs 32byte, 64byte,
and 128byte.
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As shown in Figure 7 the layout consists of a contiguous array for
buckets (key-value pairs); the value could be either a 4 byte blob or
a pointer to an entry in the data slabs. To search for a single key, the
Collector iterates over the bucket array dereferencing each key. To
enable better use of the accelerator we typically search for multiple
keys simultaneously.

The hash-table also has to perform a comparison between the ex-
pected key and the key in the bucket. To amortize the cost of invoking
the accelerator we search for multiple keys simultaneously.

BTree Collector (BTREE)
The BTree is a common data structure widely used in databases;

it arranges the key entries in a sorted manner to allow fast searches.
Similar to the hash table, we do not accelerate insertions.
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Figure 8: Descriptor for BTree Collector

Our BTree implementation supports keys up to 64 bit length. The
key parameters required by the Collector are the root pointer and the
description of the internal node. As shown in Figure 8, each sub-tree
in the BTree is essentially a vector of value nodes. Each value node
contains the key value, the data payload, and a pointer to the sub-tree
(if present). When dereferencing each level, the Collector performs a
range check and obtains the required sub-tree pointer. There is mod-
erate parallelism in the data structure; the range checks that searches
for the key position in the internal node vector can be parallelized.

Collector overhead
To estimate the overhead of the state machine of the Collector we

use Aladdin [35], a pre-RTL power-performance simulator. Aladdin
uses an ISA independent dynamic trace to estimate the power,area,
and energy for custom hardware. Table 3 shows the overhead for the
address generation logic of the individual Collectors. We quantify
the data transfer latency and account for the Collector energy in § 4
as part of the energy consumed in the cache hierarchy.

Table 3: Design parameters for Collector state machine
Area Latency (cycles) Energy

VEC 0.23mm2 3 138pJ
HASH 0.23mm2 5 266pJ

BTREE (order 5) 1mm2 20 1242pJ
Obtained using Aladdin [35]. OpenPDK Library 45nm

Handling Corner Cases: Collector Groups
Here, we describe the subtle corner case conditions that affect the

overall working of DASX. DASX requires that the data needed by
one iteration of the loop be LLC resident before the iteration com-
mences. In our benchmarks, we find that Hash Table needs 1, 2D-
Datacube, Text Search, BTree need to have 2, Recommender needs 3

5
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and Blackscholes needs 7 lines locked in the LLC for DASX to make
progress.

In DASX, a single loop iteration’s working set cannot exceed the
LLC’s set capacity (i.e., bytes/set) lest all the data needed by an it-
eration map to the same set. Using a victim cache can relax this
upper bound. Compiler techniques such as loop fission can also re-
duce the data footprint of the loop by splitting it into multiple loops.
This guarantees that PEs can access data from the Obj-Store using
keys and eliminates the non-determinism due to memory instructions
missing in the cache. However, Figure 9 illustrates the possible dead-
lock that can occur when an iteration traverses multiple data struc-
tures. In Blackscholes, each iteration needs to access the element
from seven different vectors. When a separate Collector is set up for
each of the vectors, they run independent of each other and can issue
accesses to the LLC in any order. The example illustrates one such
case where the LLC is filled by locked lines for spot[0]..spot[255]
and does not have any remaining space for the other vector’s ele-
ments (e.g., type[0]). However, to even commence iteration 0, DASX
requires all the data needed by that iteration i.e., the load slice in-
cluding spot[0],rate[0],volatility[0],type[0], and time[0] and the store
slice including price[0] has to be LLC resident. The deadlock arises
because we have locked space in the LLC for data elements needed
in a future iteration without ensuring there is space available for the
data elements in the current iteration.
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tio
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Observation: No space for type[0], 
                       LLC occupied by spot[]
Implication: Iteration 0 cannot complete 
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No Groups 
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     Solution: Accesses issued in 
                      iteration order.
Implication:  Iteration i not resource 
                       dependent on i+1 . 
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price [0]
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Figure 9: Collector Group. Left: Illustration of possible deadlock
in Blackscholes without Collector groups. Right: Collector groups
avoiding the deadlock issue.

To resolve the deadlock, we introduce the notion of Collector group.
In Blackscholes, the six Collector (spot[]...type[]) form a Collector
group (group() in Figure 2). DASX ensures that the individual Col-
lectors in a group run in lock-step and issue accesses in iteration order
to the LLC i.e., accesses are issued in the order spot[i]...type[i] before
spot[i+1]...type[i+1]. We only require that the LLC allocate space for
these elements in- order, the refill requests from DRAM itself can be
in any order. Collector groups avoid deadlocks since they guarantee
that data needed by every iteration i is allocated space in the LLC
before iteration i+1.

4. Evaluation
We perform cycle accurate simulation of DASX with the x86-ISA

based out-of-order core3 modeled using Macsim [1], the cache hier-
archy using GEMS [25] and main memory using DRAMsim2 [31].

3We assume a 32K I-cache when modeling fetch energy; the performance
simulation assumes all accesses hit to ensure fair comparison with DASX’s
PEs.

We added support for DASX’s cores into Macsim, and model the
state machine of DASX’s Collectors faithfully. We model energy
using McPAT [22] and use the 45nm technology configuration; our
caches are modeled using CACTI [26]. The energy consumption of
DASX components are modeled with the templates for the register
files, buffers, and ALUs from the Niagara 1 pipeline. Table 4 lists the
parameters. The applications include multiple iterative regions and
we profile the entire run apart from the initialization phase. We com-
pare DASX against both an OOO (Out-of-Order) core and a multicore
(with in-order processors). The baseline DASX system studies 8 PEs
with 1KB Obj-Store (in Section 4.5 we vary the number of PEs). We
compare the baseline DASX system against a 2C-4T (2core, 4thread-
s/core) multicore with the same level of TLP as DASX (in Section 4.5
we compare DASX against 2C-8T and 4C-8T systems).

Table 4: System parameters
Cores 2 GHz, 4-way OOO, 96 entry ROB, 6 ALU, 2 FPU,

INT RF (64 entries), FP RF (64 entries)
32 entry load queue, 32 entry store queue

L1 64K 4-way D-Cache, 3 cycles
LLC 4M shared 16 way, 8 tile NUCA, ring, avg. 20 cycles.

Directory MESI coherence
Main Memory 4ch,open-page, DDR2-400, 16GB

32 entry cmd queue,
Energy Params L1 (100pJ Hit, HP transistors). LLC (230pJ hit, LP tran-

sistors) [23]
L1-LLC link (6.8pJ/byte [2, 26]), LLC-DRAM (62.5 pJ
per byte [15])

Multicore 2C-4T (2 cores, 4 Threads/core), 2C-8T, 4C-8T
2Ghz, In order, FPU, 32K L1 cache per core, 4MB LLC

DASX Components
2GHz. 8 PEs, 4 stages in-order at 2 Ghz, 1 FPU and 1
ALU (per PE) INT Reg./ PE : 32 , FP Reg. / PE: 32
Shared Obj-Store (1KB fully-assoc. sector cache, 32
tags). Shared Instruction buffer (1KB, 256 entries)

4.1 DASX : Performance Evaluation

Result: DASX improves performance of data-centric applications
by 4.4⇥ over 2C-4T. Maximum speedup (Hash Table): 26.8 ⇥. Min-
imum speedup (Recommender): 1.3⇥.
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Figure 10: Execution Time (DASX vs 2C-4T). Y-axis: Times reduc-
tion in execution cycles over OOO.

We use the 2C-4T multicore to illustrate the benefits that DASX’s
MLP extraction can provide above the TLP. With 2D-Datacube, the
compute region in the loop body is small (only 21 static instructions);
DASX removes the extraneous data structure instructions and mines

6

366



the MLP implicit in the data structure to achieve a 6.4⇥ performance
improvement. 2C-4T suffers from synchronization overheads be-
tween the private L1 caches while DASX’s simpler cache hierarchy
minimizes synchronization overhead. Blackscholes includes many
(up to 65% of executed instructions) long latency floating point in-
structions and the OOO processor is hindered by these instructions
filling up the ROB before the independent memory instructions can
be discovered. While 2C-4T extracts the available TLP (5⇥ speedup)
it exploits minimal MLP since the in-order pipeline resources are oc-
cupied by the compute instructions. DASX improves performance
further (3.2⇥ speedup over 2C-4T) by extracting the MLP without
wasting execution resources. In Text Search the compute region re-
quires many instructions to compare strings. DASX improves per-
formance over the 2C-4T primarily by discovering MLP beyond the
TLP. For Blackscholes, the OOO and the multicore also suffer from
L1 thrashing due to repeated iterations over the dataset (3MB); DASX
moves the compute closer to the LLC and is less susceptible to cache
trashing. Similarly, with the BTree the working set fits in the large
LLC but as lookups iterate over the tree they thrash the L1 leading to
poor performance; DASX moves the compute closer to the LLC.

BTree and Hash Table highlight the ability of the Collector hard-
ware to discover the MLP implicit in the data structure. With the
BTree the traversal between tree-levels is sequential and requires pointer
chasing; however DASX does parallelize the range search within a
tree. Both the OOO and 2C-4T find it challenging to mine the MLP
across pointer dereferences and data dependent branches. DASX im-
proves performance by fetching in parallel the data elements for the
range search. With the Hash Table the Collector eliminates the data
structure instructions to check for the matching key; the removal of
the LLC-L1 transfers also helps in improving performance.

In the case of Recommender the compute region processes a sparse
matrix and the loop body execution is predicated on the value of each
element in the matrix. With DASX the hardware barrier that we use to
coordinate the PEs at the end of a group (8 in this case corresponding
to 8PEs) of iterations introduces an inefficiency. We find that for
8% of the iterations, 1 or more PE executes the loop body while the
other PEs are stalled at the barrier. An interesting extension to DASX
would be to add support for predication checks into the Collector
similar to [27], which advocates “triggered instructions” for spatially
programmed architectures.

To summarize the benefits of DASX are due to i) the exploitation of
data structure knowledge to run ahead and stage data in the LLC, and
ii) the leaner cache hierarchy and small Obj-Store to reduce latency of
local accesses within an iteration compared to the conventional cores
which has to access the L1, and iii) elimination of the data structure
access instructions from the iterative region.

4.2 DASX : Energy Evaluation

Result 1: DASX is able to reduce energy in the PEs between 3.5—
20⇥ relative to 2C-4T.
Result 2: Data transfer energy is reduced by 4⇥ relative to 2C-4T
by eliminating L1-LLC transfers.
Result 3: DASX’s shallow memory hierarchy helps reduce on-chip
cache access energy by 7⇥.

Core vs. PEs

Figure11 shows the reduction in dynamic energy. BTree and Hash
Table are not included in Figure 11 as they do not include any work
in the compute region and use only the Collector to traverse the data
structure. DASX’s PEs also use a simple pipeline which requires
minimal energy for instruction fetch (1KB I-buffer vs I-cache on

OOO/2C-4T) and data fetches from the Obj-Store
In 2D-Datacube we see a 11⇥ reduction in energy as the data struc-

ture instructions (eliminated in DASX) constitute a major part of all
the instructions. With Blackscholes and Text Search which have com-
pute intensive iteration, the primary energy reduction is due to the
simpler PE pipeline and reduction in fetch overhead. The main bene-
fit of DASX is being able to reduce execution time by extracting MLP
without requiring the PE to sacrifice its energy efficiency.
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Network
Another key benefit of DASX is moving the compute closer to

the LLC. Eliminating the L1-LLC transfers result on an average re-
duction of 3.7⇥ of data transfer energy consumption. For exam-
ple, BTree has low spatial locality which results in compulsory L1
cache misses, but the working set is contained within the LLC. Con-
sequently, DASX achieves 17⇥ reduction in network energy. With
2D-Datacube, and Recommender the data transfer energy is domi-
nated by the LLC-DRAM data transfer energy which is 11⇥ that of
LLC-L1 data transfer energy (see Table 4). With applications such as
Hash Table which exhibit good spatial locality the multicore can ex-
ploit TLP to reduce execution time and thereby energy; DASX mini-
mizes LLC-L1 transfers to further reduce energy by 2⇥ compared to
the multicore.
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Cache

DASX employs a lean memory hierarchy (1KB Obj-Store + 4MB
LLC). As the Collector runs ahead of the PEs in DASX and stages the
data in the LLC, it requires two accesses to the LLC for each cache
line : (1) when the data is fetched from DRAM into the LLC, and
(2) when the Obj-Store is refilled. Comparatively, both the OOO and
multicore access the LLC only on L1 misses.

Overall, DASX still reduces cache access energy, on average, by
13.6⇥ ( Figure12). This reduction comes primarily from two factors,
namely, spending less energy in loading data from the Obj-Store rel-
ative to the L1 cache and remove stack references by the elimination
of register spills due to a larger physical register file shared by the
PEs.

We observe that Blackscholes and Hash Table benefits from the
leaner memory hierarchy of DASX and from significant reduction
in stack accesses. On the other hand, for 2D-Datacube and Recom-
mender both the OOO and 2C-4T benefit from the spatial locality in
the L1 cache, and DASX incurs the additional penalty of accessing
the LLC twice for each cache line, thereby limiting the energy sav-
ings in the cache. Finally, for BTree the higher probability of finding
the non-leaf nodes in the L1 cache benefits both the OOO and 2C-4T
and consequently limit the cache energy gains observed using DASX.

For all benchmarks apart from Hash Table and BTree, the energy
for the Collector with respect to overall energy consumed was less
than 0.25%. For the Hash Table and BTree benchmark, the Collector
accounts for 6% and 4% respectively and when compared with the
cache energy consumption for DASX, they represent 16% and 51%
respectively. The OOO baseline consumes an order of magnitude
higher energy in the cache hierarchy relative to DASX (Figure 12).

4.3 DASX MSHRs

To run ahead of the compute and prefetch far ahead, the Collectors
need Miss Status Handling Registers (MSHRs) to keep track of out-
standing cache misses. In this section we study the effect of MSHRs
on DASX execution time (Figure 13 ). We found that for Blacksc-
holes, which has a compute intensive iteration (many floating point
operations), 8 MSHRs (1MSHR/PE) was able to hide the memory la-
tency. With BTree, in which each level examines 2 or 3 nodes (we use
a binary search within each level to find the next pointer), since we
traverse by level and only prefetch within each level, again 8 MSHRs
suffice. Text Search benchmark builds a heap structure and its size
depends on the length of the strings to be compared, these strings can
have locations which do not have spatial locality and hence, needed
32 MSHRs. 2d-Datacube has a small compute region and iterates
over a large data set (20Mb) and so requires a lot of MLP, thus 32
MSHRs. Both Hash Table and Recommender demonstrate high spa-
tial locality and required at most 16 MSHRs.

What about a bigger OOO?

Overall, we find that more ILP 6= more MLP for datacentric ap-
plications. We explored a more aggressive OOO to understand the
limiting factor to finding more MLP. The instruction window was
resized to 256 instructions with 2⇥ the register file and load/store
queue entries. Table 5 shows the maximum number of concurrent
cache misses sustained and the challenges introduced by a particular
data structure. Multicores with TLP help improve MLP but the gains
are limited by the ILP of the individual cores.

Collector as Prefetcher

To evaluate the upper bounds of the Collector as a prefetcher, we
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Figure 13: DASX Execution time for 8–64 MSHRs (normalized to 8
MSHRs).

Table 5: Max # of MSHR entries used for a 256 ROB core
Max. Misses Application Possible primary cause for limited misses

3 Text Search Data-dependent branches
4 Hash Table Data-dependent branches
5 BTree Pointer chasing. MLP only within tree-level
5 Recommender ROB filled by compute, waiting on data
6 2D-Datacube Stalled accesses fill load/store queue
7 Blackscholes ROB filled by compute, waiting on data
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Figure 14: DRAM bandwidth utilization (OOO, 2C-4T and DASX)
normalized to peak DRAM bandwidth (6.4GB/s)

modelled a perfect LLC for Blackscholes, Recommender and 2D-
Datacube and found that maximum performance improvement was
22% for OOO core due to the overheads of the cache hierarchy. Note
that any prefetcher is best effort and does not guarantee a timely LLC
hit; additionally the core will issue the load instruction anyway (en-
ergy overhead). The Collector eliminates these instructions and min-
imizes energy by using special purpose hardware.

4.4 Memory Bandwidth Utilization

Result: DASX attains 13.9⇥ increase in off-chip DRAM bandwidth
compared to the OOO. Max: 82.4⇥(BTree).

With data structure specific information DASX is able extract the
MLP and issue timely requests to stage the data in the LLC before
the PEs consume it. As shown in Figure 14, large increases in DRAM
bandwidth utilization are observed for 2D-Datacube, BTree and Hash
Table. For Hash Table DASX is able to approach within 52% of
the theoretical peak bandwidth of 6.4GB/s. Text Search and Recom-
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mender both include computationally intensive kernels which lag far
behind the Collector. This causes the Collector to fill up the LLC
and then wait for the PEs to catch up and free space. The memory
fetch rates are essentially limited by the latency of the compute ker-
nels. DRAM bandwidth utilization improves by 3.9⇥ and 1.4⇥ for
Text Search and Recommender respectively, relative to 2C-4T. The
increase in bandwidth is observed due to the reduced run time of
the kernels. All the DASX accelerated benchmarks access the same
amount of data as their baseline counterparts apart from Text Search
which overflows the LLC and leads to a large number of replacements
as it iterates over the dataset repeatedly.

4.5 TLP vs MLP

Result: Even with 50% lower TLP, (DASX: 4PEs vs 2C-4T) DASX
exploits MLP to improve performance by 2.3⇥ and reduce energy by
12.3⇥ (Figure 15).

(a) Recommender (b) 2D-Datacube

(c) Blackscholes (d) Text Processing
Figure 15: Energy vs Execution Time plot. Y-Axis: Energy. Lower is
better. X-axis: Execution time (scale different for each benchmark).
towards origin is better. Baseline : OOO (1,1). ⇥ : Multicore systems
2C-4T,2C-8T,4C-8T 2Ghz frequency. • DASX systems: 0.5G,1G,2G
- Clock frequency in Ghz.

We compare the energy and performance of a variety of multicore
and DASX configurations to understand the benefits of extracting
MLP versus TLP. We use parallel versions of each of the benchmarks
where the work is partitioned across multiple threads. We varied the
PE configuration of DASX between 2—10 and the frequency of the
PE (0.5Ghz,1Ghz,2Ghz) to understand the dependence of our work-
loads on the execution pipeline performance, if the Collector can ex-
tract the MLP independent of the compute units. We study three dif-
ferent multicore configurations 2C-4T (2core, 4threads) which has
the same level of parallelism as the 8-PE system, 2C-8T (16 threads)
and 4C-8T (32 threads); all multicores run at 2Ghz. Figure 15 plots
the dynamic energy vs execution time (we only show the 4 PE and 8
PE DASX for brevity).

Overall, we find that DASX extracts MLP in an energy efficient
manner and provides both energy and performance benefits over mul-
ticores which only exploit TLP. However, even with DASX the per-
formance of compute units is important to ensure that the compute

kernel does not limit the performance gains of DASX. When the PE
clock is reduced to 0.5Ghz or 1Ghz resulting in increase in execution
time of the compute region, the performance loss varies 2–5⇥ com-
pared to the 2C-4T multicore; 2D-Datacube is an exception since the
compute kernel has less work. The multicore performance benefit
and energy reduction are limited due to synchronization overheads
(2D-Datacube performs a reduction). For embarrassingly parallel
workloads (Blackscholes, Recommender, Text Search and Hash Ta-
ble), multicores improve performance proportionate to the TLP but
have minimal reduction in energy as execution resources are required
to maintain the active threads. DASX is able to provide significant
benefits with half the compute resources since the Collectors offload
the MLP extraction from the compute cores. A 2G-4PE (2Ghz,4PE)
DASX improves performance by 1.1–4.6⇥ and reduce energy by 3.6–
38⇥ compared to a 2C-4T (8 threads).

Multicore with OOO cores

We used parallel (8 thread) versions of Blackscholes and Recom-
mender to illustrate the pitfalls of using an OOO multicore to ex-
tract MLP. With 8 cores (single thread per OOO core), Blackscholes
shows a performance improvement of 7.44⇥ with a net increase in
energy of 42% vs a single OOO core. With Recommender the paral-
lel version demonstrates a 8⇥ speedup with a 24% increase in energy
consumption. While the OOO multicore has performance better than
DASX (16% and 21% respectively), the energy consumption is far
greater than DASX (17⇥ and 7⇥ reduction in energy consumption
by DASX).

4.6 Breakdown of performance gains
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Figure 16: Motivation for Collector and Obj-Store to interface accel-
erators (PEs) to the memory system. (Lower is better)

To further illustrate the impact of each design decision of the DASX
architecture, we conducted the following experiment. Using in-order
cores as compute units, we measured the performance while a) vary-
ing the number of cores b) placing them near the LLC with only a
1KB L1 c) using a Collector to stage data in to the LLC d) adding an
Obj-Store and removing address generation from the cores to form a
complete DASX system and e) increasing the number of PEs to ex-
ploit loop level parallelism. Figure 16 shows the five configurations
in the order they have been described herein. The performance of
each configuration, for each benchmark, was normalized to the exe-
cution of the benchmark on an OOO core. We illustrate our findings
using 2 benchmarks based on their behaviour on an OOO core, i.e
memory bound (2D-Datacube) and compute bound (Blackscholes).

We find that the 2C-4T configuration only improves performance
by 25% for the memory bound 2D-Datacube benchmark. Placing a
single in-order core near the LLC (1C configuration) is able to buy
back some of the performance drop and is within 24% of the OOO
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baseline. This illustrates the benefit of computing near memory for
data centric iterative workloads. Adding a Collector to ensure all
accesses to the LLC are hits (1C-CL configuration) works well for
the memory bound workload and a single in-order core is able to
match the performance of the OOO baseline. Adding an Obj-Store
and removing data structure access instructions from the compute
kernel allows DASX-1 to further improve performance by 6% for 2D-
Datacube and 11% for Blackscholes. Finally, using 8 PEs in DASX-8
improves performance by 5⇥ for 2D-Datacube and 7⇥ for Blacksc-
holes.

4.7 Area Evaluation

We use McPAT to model the area overhead of the DASX’s PEs. To
model the DTLB, Obj-Store, and the reference count (Ref.# for lock-
ing cache lines), we use CACTI 6. The dominant area overhead in
DASX is the FPU macro which is adopted from the Penryn processor
in McPAT. Out of the six data-centric applications we investigated,
five of them require minimal FPU support; however, we require an
FPU per PE for Blackscholes (up to 65% of the compute kernel in-
structions are floating-point). It may be feasible to share the FPUs
between the PEs like Sun-Niagara multicores to reduce the overhead.
In comparison, the OOO core occupies 25.701 mm2.

Table 6: Area Analysis (45nm ITRS HP)
Component Area (mm2)
ALUs (1 each) INT (0.078), FP (2.329), MUL/DIV (0.235)
Reg File (32+32) 0.346
Total (PE) 2.988
Ins. Buffer (256 entries) 0.052
DTLB (64 entries) 0.143
Ref.# 6b/line. 47KB/4MB LLC
DASX w/ FPU (8*PEs) 24.099
w/o FPU 5.46

5. Related Work
Table 7 qualitatively compares DASX’s design against existing ar-

chitectures. We discuss individual designs below.

Specialized Core Extensions
Recently, researchers have proposed specialized compute engines

that are closely coupled with the processor [3, 16, 29, 38]. In ker-
nels which operate on large data structures [11] the load/store in-
terface imposes high energy overhead for address generation [33].
The collectors in DASX exploit data structure knowledge to mini-
mize the complexity of the address generation and improve MLP to
supply data to compute accelerators. Loop accelerators [14] exploit
repeated instruction streams to save fetch energy; DASX focuses on
data structures. SIMD extensions reduce per instruction overheads,
but are limited by the register width and difficult to apply to value
dependent traversals. However, the PEs themselves may be enhanced
with SIMD support similar to the GPGPU execution model.

Data structure Appliances
Recent research has focused exclusively on key-value stores [9,

17]. FPGA-Memcached [9] developed an FPGA-based hash-table
and TCAM exploited power efficient content-addressable memory [17].
Unfortunately, these systems are challenging to use in general-purpose
programs. Key-value stores do not efficiently represent associative
containers; an integer array represented in TCAM [17] would re-
quire 2⇥ the storage as a software data structure. More recently,

HARP [39] developed support for database partitioning. Their mem-
ory system includes an application-specific on-chip streaming frame-
work to interface with a custom on-chip computational logic. DASX
seeks to accelerate iterative computation that access data structures
and exhibit temporal and spatial locality. DASX also develops tech-
niques for tiling the dataset at runtime to fit in the LLC and build a
general-purpose memory interfaces to support software compute ker-
nels.

Prior work have proposed using limited capacity hardware data
structures [10, 13, 20, 40]. While this enables high performance, the
hardware exports a limited interface to software which also needs to
provide virtualization support [6]. DASX accelerates software data
structures and does not require any specialized storage for the data
structures. Since software manages the allocation DASX does not re-
quire complex virtualization support. Past work have also focused on
CPU instructions for assisting software queues [21, 28].

Hardware walkers, both TLB [4] and more recently hash-table [19]
focus on supporting efficient lookups in indexed data structures. While
both DASX and hardware walkers exploit semantic information about
data structures, DASX targets iterative compute kernels that stream
over the entire data structure. DASX permits the compute kernels to
be written in software. DASX adaptively tiles the dataset to handle
cache contention between multiple data structures in an iteration and
adapts to the compute kernel’s temporal and spatial locality. While
hardware walkers use a narrow queue-like interface to supply data,
DASX supports a more flexible general purpose interface to the com-
pute kernel. Programmable memory controllers [7, 8] provide an ef-
fective site to embed DASX’s data-structure Collectors.

6. Summary
We have focused on exploiting data structure information to pro-

vide compute accelerators with energy-efficient interfaces to the mem-
ory hierarchy. We developed DASX, a hardware accelerator that in-
tegrates with the LLC and supports energy efficient iterative compu-
tation on software data structures. DASX exploits information about
the computation kernel and actively manages the space in the LLC
to ensure that no data fetch is wasted. DASX deploys cache refill en-
gines that are customized for software data structures which increases
the MLP, eliminates the penalty of transfers through the cache hierar-
chy, and removes data structure instructions.

7. References
[1] Macsim : Simulator for heterogeneous architecture -

https://code.google.com/p/macsim/.
[2] D. Albonesi, K. A, and S. V. NSF workshop on emerging technologies

for interconnects(WETI), 2012.
[3] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,

T. Nowatzki, and K. Sankaralingam. Design, integration and
implementation of the DySER hardware accelerator into OpenSPARC.
IEEE 18th International Symposium on High Performance Computer
Architecture (HPCA), 2012, pages 1–12, 2012.

[4] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating
two-dimensional page walks for virtualized systems. In PROC of the
13th ASPLOS, 2008.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In PROC of the
17th PACT, 2008.

[6] G. Bloom. Operating System Support for Shared Hardware Data
Structures. GWU Thesis, pages 1–136, Apr. 2013.

[7] M. N. Bojnordi and E. Ipek. PARDIS: a programmable memory
controller for the DDRx interfacing standards. In ISCA ’12:
Proceedings of the 39th Annual International Symposium on Computer

10

370



Table 7: DASX vs Existing Approaches
OOO+SIMD Decoupled Architecture [36] HW Prefetching DASX (this paper)

Memory-Level Parallelism
More MLP (limiting factor listed below)�����������������������!.

Register width Strands and inter-pipeline queues Predictor table MSHRs
Data-Struct. Instructions Core executes data structure instructions (increases dynamic energy). No (saves dynamic energy)
Big data-structure support Limited by L1 cache size and load/store queue interface. Limited by predictor table Limited by LLC size
Fixed-latency Loads No; cache misses Yes (hardware queue) No; cache misses Yes (LLC line locking)
Value-Dependent Traversal Challenging Limited by branch prediction. X (No support) Efficient. Data structure-specific.

Architecture. ACM, June 2012.
[8] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,

A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: building a smarter memory controller. In PROC
of the 5th HPCA, 1999.

[9] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala. An FPGA memcached appliance, 2013.

[10] R. Chandra and O. Sinnen. Improving application performance with
hardware data structures. Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010, pages 1–4, 2010.

[11] J. Chang, P. Ranganathan, T. Mudge, D. Roberts, M. A. Shah, and K. T.
Lim. A limits study of benefits from nanostore-based future
data-centric system architectures, 2012.

[12] E. S. Chung, J. D. Davis, and J. Lee. LINQits: big data on little clients.
In PROC of the 40th ISCA, 2013.

[13] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: an in-fabric memory
architecture for FPGA-based computing. In PROC of the 19th FPGA.
ACM Request Permissions, Feb. 2011.

[14] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution
Accelerator for Loops. In PROC of the 35th ISCA, 2008.

[15] B. Dally. Power, programmability, and granularity: The challenges of
exascale computing. In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 878–878, 2011.

[16] H. Esmaeilzadeh, A. Sampson, and D. Burger. Neural Acceleration for
General-Purpose Approximate Programs . PROC of the 44th MICRO,
2012.

[17] Q. Guo, X. Guo, Y. Bai, and E. Ipek. A resistive TCAM accelerator for
data-intensive computing. In MICRO-44 ’11: Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture.
ACM Request Permissions, Dec. 2011.

[18] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled
execution of recurring traces for energy-efficient general purpose
processing. In PROC of the 44th MICRO, Dec. 2011.

[19] O. Kocberber, B. Grot, J. Picore, B. Falsafi, K. Lim, and
P. Ranganathan. Meet the Walkers. PROC of the 46th MICRO, pages
1–12, Oct. 2013.

[20] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural support
for fine-grained parallelism on chip multiprocessors. In PROC of the
34th ISCA, 2007.

[21] S. Lee, D. Tiwari, Y. Solihin, and J. Tuck. HAQu:
Hardware-accelerated queueing for fine-grained threading on a chip
multiprocessor. In HPCA ’11: Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture.
IEEE Computer Society, Feb. 2011.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In PROC of the
42nd MICRO, 2009.

[23] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P:
Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques, 2011.

[24] K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. C. Lee, and
M. Horowitz. Rethinking dram power modes for energy proportionality.
In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 131–142. IEEE Computer

Society, 2012.
[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, Nov. 2005.

[26] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In PROC of the 40th MICRO, 2007.

[27] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer. Triggered instructions: a control paradigm for
spatially-programmed architectures. In PROC of the 40th ISCA, pages
1–12, Apr. 2013.

[28] Y. M. Patt. Microarchitecture choices (implementation of the VAX). In
PROC of the 22nd annual workshop on microprogramming and
microarchitecture, 1989.

[29] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. Horowitz. Convolution Engine: Balancing Efficiency & Flexibility
in Specialized Computing. PROC of the 40th ISCA, pages 1–12, Apr.
2013.

[30] P. Ranganathan. From Micro-processors to Nanostores: Rethinking
Data-Centric Systems. Computer, 44(January):39–48, 2011.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle
accurate memory system simulator. Computer Architecture Letters,
10(1):16 –19, jan.-june 2011.

[32] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia,
M. S. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu,
N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W.
Keckler, and D. Burger. Distributed Microarchitectural Protocols in the
TRIPS Prototype Processor. In PROC of the 39th MICRO, 2006.

[33] S. Sethumadhavan, R. McDonald, D. Burger, S. S. W. Keckler, and
R. Desikan. Design and Implementation of the TRIPS Primary Memory
System. In International Conference on Computer Design (ICCD),
2006, pages 470–476, 2006.

[34] A. Seznec. Decoupled sectored caches: conciliating low tag
implementation cost. In PROC of the 21st ISCA, 1994.

[35] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture, 2014.

[36] J. E. Smith. Decoupled access/execute computer architectures. In 25
years of International Symposia on Computer Architecture, 1998.

[37] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten.
Architectural specialization for inter-iteration loop dependence
patterns. In Intl Symp. on Microarchitecture (MICRO), 2014.

[38] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation cores:
reducing the energy of mature computations. In PROC of the 15th
ASPLOS, 2010.

[39] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating Big Data
with High-Throughput, Energy-Efficient Data Partitioning .

[40] L. Wu, M. Kim, and S. Edwards. Cache Impacts of Datatype
Acceleration. IEEE Computer Architecture Letters, 11(1):21–24, Apr.
2012.

11

371




