
 1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Peruse and Profit : Estimating the Accelerability of Loops

Snehasish Kumar
School of Computing Sciences

Simon Fraser University
ska124@sfu.ca

Vijayalakshmi Srinivasan
IBM Research

viji@us.ibm.com

Amirali Sharifian
School of Computing Sciences

Simon Fraser University
amiralis@sfu.ca

Nick Sumner
School of Computing Sciences

Simon Fraser University
wsumner@cs.sfu.ca

Arrvindh Shriraman
School of Computing Sciences

Simon Fraser University
ashriram@cs.sfu.ca

ABSTRACT

There exist a multitude of execution models available today
for a developer to target. The choices vary from general pur-
pose processors to fixed-function hardware accelerators with
a large number of variations in-between. There is a growing
demand to assess the potential benefits of porting or rewrit-
ing an application to a target architecture in order to fully
exploit the benefits of performance and/or energy efficiency
offered by such targets. However, as a first step of this pro-
cess, it is necessary to determine whether the application
has characteristics suitable for acceleration.

In this paper, we present Peruse, a tool to characterize
the features of loops in an application and to help the pro-
grammer understand the amenability of loops for acceler-
ation. We consider a diverse set of features ranging from
loop characteristics (e.g., loop exit points) and operation
mixes (e.g., control vs data operations) to wider code region
characteristics (e.g., idempotency, vectorizability). Peruse is
language, architecture, and input independent and uses the
intermediate representation of compilers to do the charac-
terization. Using static analyses makes Peruse scalable and
enables analysis of large applications to identify and extract
interesting loops suitable for acceleration. We show analy-
sis results for unmodified applications from the SPEC CPU
benchmark suite, Polybench, and HPC workloads.

For an end-user it is more desirable to get an estimate
of the potential speedup due to acceleration. We use the
workload characterization results of Peruse as features and
develop a machine-learning based model to predict the po-
tential speedup of a loop when off-loaded to a fixed func-
tion hardware accelerator. We use the model to predict the
speedup of loops selected by Peruse and achieve an accuracy
of 79%.

Keywords

Accelerator, static analysis, machine learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-03, 2016, Istanbul, Turkey

c© 2016 ACM. ISBN 978-1-4503-4361-9/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926269

1. INTRODUCTION
Energy efficiency has become a key design constraint for

computer systems. The continued shrinking of the gains
from Dennard scaling negatively impacts energy efficiency
and transistor speed. At the same time, the continued in-
crease in transistor density allows systems to have more
transistors, even though only a few can be powered at any
given time, leading to the widely recognized phenomenon
of “dark silicon” [42]. Although application specific inte-
grated circuits (ASICs) clearly offer significant improvement
in energy efficiency relative to general-purpose processors, it
is not clear how applications in general can leverage fixed-
function hardware [26]. Programmable hardware accelera-
tors [23] provide more flexibility relative to ASICs and at the
same time offer better energy efficiency relative to general-
purpose processors. However, it is unclear what code re-
gions in an application may profit from using these pro-
grammable hardware accelerators. Hardware accelerators,
irrespective of the type, improve energy efficiency and per-
formance by customizing the data and control circuitry for
particular program regions. Accelerators arguably present a
hard challenge for programmers due to their application or
domain specific nature. The effectiveness of an accelerator
for an application depends on the extent to which the appli-
cation exhibits the characteristics that map efficiently to the
accelerator. For instance, data-dependent branches consti-
tute a challenge particularly for GPU execution models. In
this paper, we characterize code regions in workloads with a
primary focus on assessing programmer effort and hardware
effort required to exploit accelerators. Akin to the question
“What is parallelizable?” that gained widespread attention
with the advent of multiprocessors, we set out to answer the
question “What is acceleratable?”. The question is particu-
larly pertinent today when custom hardware seem to point
the way forward for obtaining performance in our energy
constrained future. Instead of focusing on any particular
domain-specific hardware accelerator, we chose to charac-
terize workloads independent of the accelerator architecture
but still provide information to assess the suitability of the
workloads for acceleration on heterogeneous system archi-
tectures. Heterogeneous architectures may possibly include
multiple types of accelerators, including fixed-function ac-
celerators, domain-specific programmable accelerators (e.g.
GP-GPUs), and traditional multicore processors.

A key issue with program characterization is what code
granularity the static analysis should focus on, i.e. function

 2

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

boundaries, loops, or basic blocks. We choose to focus on
loops as they typically dominate execution times and their
iterative nature are naturally suited for accelerators [27].
However, not all loops are suitable for acceleration. For ex-
ample, loops with loop-carried dependencies may limit per-
formance improvements from specialized data-parallel hard-
ware accelerators relative to a general-purpose hardware.In
this paper, we identify program metrics that play an impor-
tant role in the acceleratability of loops and systematically
characterize and analyze application’s loops.

Typically, workload characterization for a given architec-
ture tends to be dynamic in nature. These dynamic ap-
proaches can use either hardware performance counter mea-
surements on current multicores [20, 16, 49] or use simulation-
based analysis. Such dynamic characterization approaches
are dependent on the target ISA and the inputs, as also
pointed out in prior work[57, 29], and may not expose the
features of the workload.

We propose Peruse, an LLVM-based static program anal-
ysis framework, to characterize key accelerator-oriented fea-
tures within the loop nests of applications. Peruse presents a
mechanical approach to identify the suitability of the work-
load for acceleration based on their characteristics that we
have identified and analyzed. To the best of our knowl-
edge, Peruse is the first of such suitability assistants for ac-
celerators, but it builds upon and complements a long line
of research related to workload characterization and paral-
lelization.

Researchers at IBM have used Peruse to find and isolate
loops of interest before further analyses was applied. For ex-
ample, for the Discrete Wavelet Transform benchmarks from
the PERFECT suite, Peruse was used as a filter to discard
loops not suitable for acceleration. Candidate loops were
then profiled using Aladdin [24] for ASICs as well as running
on GPUs to determine a suitable performance/watt target.
Using Peruse to filter the loops not suitable enabled the
dynamic analyses to target only the relevant (accelerator-
friendly) loops.

Our contributions include: (i) Peruse : A program analy-
sis tool to characterize loops within real-world applications.
Leveraging LLVM’s internal representation (IR), we are able
to avoid introducing bias from analyzing only a single, spe-
cific target architecture. Using Peruse we are able to char-
acterize individual loops to identify the nature of compute
operations, data footprint, side-effects, branch divergence,
and nesting depth among other characteristics that help
to not just identify but also to understand the program-
mer and hardware effort required for acceleration. Building
on prior efforts in auto-parallelization, we extract memory-
dependence characteristics and postulate that they are also
indicative of performance gains obtainable from fixed func-
tion hardware or other execution models. Peruse also dis-
covers code characteristics such as idempotence [14] that are
indicative of programmer effort required to port the code re-
gion to fixed-function hardware. (ii) An end-to-end frame-
work using machine-learning models to predict the potential
speedup of a loop when off-loaded to a fixed function hard-
ware accelerator.

2. BACKGROUND
The design of efficient compute platforms, whether effi-

cient in terms of execution time, power, memory, or some
other contested resource, requires direct interaction between

programmers and architects. Programmers need help to fo-
cus on specific program regions that can profit from running
on specialized hardware and architects need help in design-
ing the hardware accelerators that can improve the efficiency
of applications. To achieve both these objectives, we need to
understand the characteristics of the workloads themselves.
By formalizing the properties of programs that limit effi-
cient design, developers and architects are together able to
boost both the efficiency of their applications and the pro-
ductivity of the architects who design them. In this section,
we discuss the context of our work, trying to answer the
question of “what is acceleratable?”, with respect to “what
is vectorizable?” and “what is parallelizable?”.

2.1 What is vectorizable?
An early instance of domain specific computation is vec-

tor processors that perform the same operation on arrays or
vectors of data all at once. Compiler developers have de-
veloped auto-vectorization [54] techniques to enable appli-
cations to take advantage of vectors operations and answer
the question: “is the code region vectorizable?”. To answer
this question, compilers look at the data dependence graphs
of programs, which show where values are created and used
within a program [37]. In the common case of vectorizing
loops, a compiler will try to perform multiple iterations of
a loop simultaneously using vector operations. For a loop
to then be vectorizable, every iteration of the loop must
perform the same operations or be transformable to such a
loop. Furthermore, the values used by each iteration can-
not be defined or overwritten by other iterations. Other-
wise, vectorizing the loops could yield incorrect results. In
practice, even nested loops and function calls prove to be
challenging, although progress has been made against such
limitations. Compilers examine the data dependence graphs
of programs to recognize these patterns and identify loops
that are amenable to vectorization.

2.2 What is parallelizable?
Seeded by the demand for high performance computing

(HPC) in scientific and engineering domains, parallel com-
puting has long proven itself as a means of exploiting multi-
ple machines, processors, or cores to speed up applications.
Indeed, with the plateau of CPU clock speed improvements,
there is a growing need for concurrent and parallel solutions
in non-HPC applications. In either case, this fueled the need
for developers and compilers to analyze code in order to ex-
ploit parallelism. This required understanding what makes
code parallelizable.

Similar to the question of vectorizability, parallelizability
relies heavily on recognizing the data dependencies within a
program and within loops in particular. For instance, if a
later iteration of a loop uses or updates a value computed
in an earlier iteration, then executing those iterations in
parallel could lead to a race condition that produces non-
deterministic results. The presence or patterns of such con-
flicting memory accesses crucially determine whether and/or
how a loop may be parallelizable. Thus, techniques like de-
pendence testing have been developed to identify such con-
flicting access patterns [22].

However, the restrictions imposed upon vectorizable code
do not all apply to parallelization. This is in part due to the
lock-step nature of vector operations, while general-purpose
parallelism focuses on task-oriented parallelism. While ev-

 3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ery iteration of a loop must perform the same operations
to be vectorizable, a parallelizable loop may exhibit widely
varying behavior in each iteration as long as no conflicting
dependencies are introduced. Recognizing this relaxation of
the vectorizability constraints allows developers to still reap
the benefits of parallelization when vectorization is difficult.

2.3 What is acceleratable?
The energy efficiency and performance benefits from hard-

ware accelerators now pose a new question to both software
developers and compilers alike: “What is acceleratable?”
Previously, the hardware execution model has been fixed,
but it is now possible to customize the model for an ap-
plication using techniques like fixed function accelerators.
Thus, this final question is arguably broader, encompassing
both existing and hypothetical execution models, yet it is
commonly asked today for many workloads as general pur-
pose multiprocessor chips hit the power wall. This question
is easier to address when coupled with a known execution
model, and the traditional approach has been to port an
application to answer the question. While this provides a
concrete answer for that particular execution model, it is
dependent on the expertise of the developer, and it poses a
large time sink with no guarantee of a profitable end result.
Recent work has looked at how to estimate performance, via
dynamic characterization, for various execution models such
as OpenMP style parallel[18, 44], GPU style[8] as well as for
fixed function hardware[24]. On the other hand, there are
many proposals[35, 23, 65] for innovative accelerator archi-
tectures that promise improved performance and increased
energy efficiency. Peruse aims to reconcile the gap between
the execution models and workload characterization. It pro-
vides a convenient first-hand look into which regions of code
are likely to be feasible and profitable for acceleration.

3. PERUSE FRAMEWORK
The primary purpose of Peruse is to aid in understanding

opportunities for acceleration in a given application. The
design of Peruse integrates LLVM IR analysis infrastructure
with reporting techniques to study a wide variety of appli-
cations. Determining whether a code region is amenable for
acceleration, requires us to consider the important charac-
teristics of particular architectures. For instance, in CPU-
based execution models (independent of Out-of-Order vs
In-order) a key source of energy inefficiency is instruction
fetch [26], and hence to determine the profitability of ac-
celerating a code region we consider the number of static
instructions. Other characteristics influenced by the exe-
cution model include features such as branches, which di-
rectly impact throughput accelerators such as GPUs [55],
and data footprint, which impacts fixed-function hardware
models that employ local stores. We define and discuss the
features in Sections 3.6 and 3.7. The key goal of Peruse is
to extract the key characteristics of applications that lend
themselves to acceleration and to use them to automatically
filter out the loops clearly not suited for acceleration.

Peruse is implemented as an LLVM IR analysis pass to
obtain characteristics of loop nests, individual loops, and
functions called within the loops. This analysis is source
language independent, as it operates upon the LLVM In-
termediate Representation (IR). LLVM IR for a program
can be generated using clang (for C/C++/ObjC). Peruse
builds upon extensive work done by the compiler commu-

nity for code optimization and exposes the key features from
the code analysis passes to help the programmer understand
the benefits and limits of porting the code region to acceler-
ators. It also incorporates components from earlier work on
idempotent code generation[14] and auto-parallelizing com-
pilers[1] to aid in analysis of wider code characteristics. The
rest of this section presents the key design decisions in Pe-
ruse.

3.1 Static vs Dynamic Characterization
A key aspect of workload characterization is whether the

characterization is static, i.e. examining only the structure
and semantics of the application, or dynamic, i.e. exam-
ining the behavior of an application on a particular input.
Typically, workload characterization for a given architecture
tends to be dynamic in nature. These dynamic approaches
can be further classified into native and simulation-based
analysis. Native dynamic characterization observes the ap-
plication’s behavior on a given architecture while monitoring
events exposed via a predefined interface, e.g. hardware per-
formance counters on general purpose processors. Simulated
dynamic characterization offers the flexibility of observing
any desired metric and changing the architecture represen-
tation as required, but it is slow relative to native execution
and limited by the model’s accuracy. More important, both
dynamic approaches are dependent on the target ISA as also
pointed out in prior work[57], The features of the workload
itself may not be exposed due to the constraints imposed
by the ISA. Finally, the robustness of the dynamic charac-
terization is also input dependent. Input dependent charac-
terization could impact important features such as branch
divergence as well as observed memory dependencies.

With Peruse, we choose to characterize the workload via
static program analysis. While earlier static analysis has
primarily focused on compiler transformations[61, 51] and
bug checking[5, 50], Peruse employs static analysis to char-
acterize loops to determine whether they may be suitable for
a particular architecture. While the dynamic analysis based
approaches may precisely characterize how a program be-
haves under a particular input, they only under approximate
the overall program behavior. Thus, the results may even
unsafely contradict characterizations produced via some al-
ternative input. In order to produce a characterization that
safely represents all possible inputs static techniques are re-
quired.

3.2 IR vs Source
In order to achieve language independence, we implemented

Peruse on top of the LLVM IR. Operating on top of the IR
has several advantages over operating on source code or even
abstract syntax trees. Most notably, analyzing the IR frees
the implementation from depending on any one language.
As long as the language can be compiled to LLVM IR, Pe-
ruse can produce a characterization for it. Given that this
includes any language compiled by clang, 403.gcc, or third
party front ends, the flexibility is substantial. This well es-
tablished and canonical IR also simplifies analysis.

3.3 Loops vs full program analysis
Prior work examines acceleration opportunities at the func-

tion level[17, 34] and at the level of loops within a pro-
gram [56]. In order to capture the most salient and relevant
features, Peruse focuses on loops because they represent fre-

 4

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

quently executing paths that dominate the runtime of an
application. We study the runtime behaviour to justify our
choice of only analysing loop nests for accelerability. To
study the workloads, we build an LLVM based tool which
performs efficient path profiling[7]. We pick 12 workloads1

from our set to analyse and show a) path bias exists and b)
loop nest contained (i.e “loopy”) paths are frequent.

The workloads are executed with a varied set of input
provided by their respective suites, and their path profiles
(i.e the frequency of execution of each static path) are col-
lected. The workloads we study show limited input sensi-
tivity with respect to path profiles. This is an important
note since the profiles generated by traditional profilers like
gprof, do change based on the inputs provided. Additionally,
results from sampling based profilers may also be perturbed
by micro-architectural effects. From our analysis of paths in
each workload we find that loopy paths are important in all
workloads. Paths are ranked using the frequency of the path
being executed multiplied by the number of instructions in
the path (Pwt = Pfreq × |Pins|). We summarize our obser-
vations in Table 1. Column

∑
Pwt% shows the percentage

weight of the top five highest weighted paths. In all but
1 of 12 applications, the weight is greater than 30%. For
this application, we enumerated lower ranked paths until we
reached a coverage of at least 40% and observed that all
these paths are loop nest contained paths.

All workloads apart from 453.povray identify loopy paths
as the highest weighted path for the selected function. For
453.povray, the object methods are stored as function point-
ers and the appropriate function invoked at runtime. The
main loop iterates over objects in the scene, thus the parent
function is invoked in a loop.

Overall, we find on average 25% of the work is performed
by a single path in a loop. Furthermore, we find that 11 of
the 12 application paths are part of a loop nest. Finally, in
the workloads where the paths are not loop nest contained,
we find them to be invoked in a loop.

Workload Name Function Name
∑

Pwt % Loopy?

401.bzip2 handle compress 35 Yes
464.h264.refref dct luma 16x16 55 Yes
470.lbm LBM performStreamCollide 100 Yes
444.namd calc pair energy fullelect 78 Yes
482.sphinx3 vector gautbl eval logs3 100 Yes
429.mcf price out impl 77 Yes
450.soplex vSolveUrightNoNZ 33 Yes
458.sjeng gen 24 Yes
403.gcc bitmap operation 57 Yes
456.hmmer P7Viterbi 100 Yes
453.povray All Sphere Intersections 89 No

Table 1: Path bias of loop nest contained paths

3.4 Feature Selection
In order to address whether or not an existing CPU imple-

mentation of an algorithm is acceleratable, we consciously
ensured that Peruse does not require any extra code an-
notation or information about how the program could be
rewritten. Indeed, the burden of porting the program with-
out knowing whether the program will run efficiently on an
accelerator is precisely why a tool like Peruse can be useful

1We do not analyse overly simple kernels such as those from
PolyBench. We also exclude benchmarks which use language
features such as C++ exceptions as they cannot be acceler-
ated easily.

for programmers to calibrate their initial expectation. Hav-
ing guidance on the acceleratability in advance can better
streamline efforts to rewrite applications for a particular tar-
get. Based on this intuition, Peruse instead examines several
general application features that are selected to capture the
characteristics of the workload.

While some features may affirm that, for instance, a loop
is suitable for acceleration on a particular execution model,
others can instead provide evidence that a loop is unsuitable
for acceleration on a particular model. For example, runtime
memory allocation is challenging to implement for acceler-
ator architectures. Such evidence is even more important
than recognizing suitability if there are no easy solutions at
the algorithmic or implementation level to bypass or elimi-
nate such features. For example, in a stencil computation,
loop carried memory dependencies are bound to be present.
Such computation cannot be offloaded to an OpenMP style
parallelizing execution model. Sections 3.6 and 3.7 present
the chosen characteristics in more detail.

3.5 Query based filtering
While synthetic benchmarks such as Polybench contain

few loops on average, real world applications contain hun-
dreds of loops. Peruse discovered an average of 886 loops
in each benchmark of the SPEC2006 benchmark suite (max
4635 – 403.gcc, min 23 – 470.lbm). Manually inspecting the
results and characteristics extracted for each of these loops
in each benchmark is tedious and not scalable. Thus, it is
beneficial to also automate the search for prime accelera-
tion candidates based on a set of criteria derived for a given
execution model. This allows Peruse to shortlist a small
number of loops that can be further investigated manually
or automatically classified by a machine learning model as
described in Section 5.

To retain flexibility and make it easy to consider varied
execution models for the same application, Peruse exposes
a query interface where the user can specify which features
and characteristics should be used to filter and prioritize the
reported results. Multiple characteristics may be specified as
shown in the pseudocode below. The query to select the top
15 candidate loops for a data parallel, thoughput oriented
execution model could be:

SELECT * FROM loops WHERE IsInnermost = True

AND Mem-Deps-Count = 0 ORDERBY Loop-Data-Tile

DESCENDING ORDERBY Branch-Ins-Count

ASCENDING LIMIT 15

These queries can specify which characteristics must be
true or false, how results should be ordered, and how many
results should actually be provided to the user.

3.6 General Features
Peruse assigns unique identifiers to loops and loop nests

and gathers general characteristics for all loops encountered
in the benchmark. The list of features extracted by Peruse
is shown in Table 2.

1. Annotated Parallel : Loops may be marked up with
#pragma omp parallel or #pragma ivdep to indicate
the absence of loop carried dependencies. This boolean
is set, dependent on support from the compiler fron-
tend, when such a directive is present in the source
code.

 5

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Group Fields
Loop characteristics Innermost, Annotated Parallel, Trip Count, Loop Exits and Loop Nest Depth
Instruction characteristics Static instructions, Branches, Atomics, Intrinsics, Big Operations, Fence , Side Effect and Carried Memory Dependencies
Code characteristics Memory Allocations, Data footprint, Compute-to-Communicate Ratio, Function Calls, Vectorizable, Idempotent
Data structure characteristics Data Structure Containers, Accessors and Mutators, Strided Accesses

Table 2: General Workload Characteristics Analyzed by Peruse

2. Atomics : Indicates the presence of atomic instructions
such as CMPXCHNG or RMW instructions. Similarly
for Intrinsics and Fence Count.

3. Big Operations : Long latency floating point opera-
tions.

4. Strided Accesses : Indicates the number of arrays ac-
cessed in a strided manner with respect to the loop
induction variable.

3.7 Accelerator Specific Features
Peruse also uses some more in-depth analysis to obtain

additional features from the loops to determine suitability
for acceleration.

3.7.1 Data Footprint and C-to-C ratio

The loop data footprint indicates the total amount of dis-
tinct local and global memory referenced, either read or
written, in the loop body. This metric is useful to gauge
the amount of local storage to provision for while exploring
new accelerator architectures. It is also useful to gauge the
amount of work being done. For example, a large amount of
data being accessed could potentially favor accelerating the
loop on a throughput-oriented architecture. The compute to
communication (C-to-C) ratio provides a similar intuition.
Again this metric could help determine whether a given loop
is a good candidate to port to an architecture such as GPU,
where the data transfer cost must be amortized by the com-
pute performed.

3.7.2 Function calls and data structures

When Peruse encounters a function call within a loop
body it characterizes the function itself provided the source
code is available. Peruse collects features of the functions
such as the number of arguments, recursive nature, purity,
idempotence and general instruction characteristics to aug-
ment the previously collected information for the loop body.
For scalability, however, Peruse only characterizes function
calls one level deep. Functions called transitively by func-
tions called in the loop body are not characterized but are
indicated in the characteristics of the original function call.
Should these function calls be to standard data structure in-
terfaces such as STL data structures, Peruse can even recog-
nize these calls and classify them as data structure accessors
and data structure mutators.

3.7.3 Vectorizability

Based on the integrated LLVM vectorizer, introduced in
LLVM 3.3, Peruse tests the loop to determine whether it is
possible to vectorize. If not, Peruse reports the limiting fac-
tor for vectorization. Auto-vectorization in LLVM is nascent
and may not yet be at par with aggressive implementations
in compilers such as IBM’s XLC, but it gives a reasonable
estimate of limiting factors.

3.7.4 Idempotence

Idempotence in computing refers to the ability to freely
execute a section of code without side effects. Entry points of
these sections act as implicit checkpoints, and thus idempo-
tent operations provide the unique ability to recover from an
operation via re-execution rather than checkpointing. This
is an important feature and has been frequently discussed
in prior work[41, 52, 60]. In this light, there has been signif-
icant work in static analysis for idempotent processing and
code generation[14]. Peruse integrates open sourced work on
idempotent processing[14] to test loop bodies and function
bodies for idempotence.

3.7.5 Memory Dependencies

When a store to memory precedes another store or read to
the same location, the second access depends upon the first.
Informally, this indicates that the accesses cannot be easily
reordered without changing the meaning and behavior of the
program. For instance, if a memory access in one iteration of
a loop depends on an access in an earlier iteration, then those
two iterations cannot easily be made to execute concurrently.

We implement hierarchical dependence testing as used by
AESOP [1]. Hierarchical dependence testing was described
by Burke et al.[9] as a means to efficiently implement ex-
isting dependence tests while extending them to interpro-
cedural analyses. The dependencies between array accesses
at varying nesting depths in a loop are described using di-
rection vectors (first introduced by Wolfe[64]). A direction
vector for a pair of memory accesses is a list of symbols
that describes their relation with respect to the induction
variable. The symbols commonly used in direction vectors
are:

1. * : No dependence for any iteration

2. 0 : Dependence within the same iteration

3. < : Dependent on a prior iteration

4. > : Dependent on a future iteration

4. PERUSE ANALYSIS CASE STUDIES
In this section, we present case studies of selected appli-

cations from SPEC2006 (C and C++ benchmarks), Poly-
bench [48], and CORAL[11]. The selected benchmarks are
seidel (3 loops, from Polybench), lulesh (10 loops, from CORAL),
470.lbm (23 loops, from SPEC2006), 482.sphinx3 (588 loops,
from SPEC2006) and 444.namd (623 loops, from SPEC2006).
The benchmarks are listed in ascending order of the num-
ber of loops they contain, with seidel having the least and
444.namd having the most. We demonstrate how Peruse is
able to extract useful characteristics for these benchmarks
to guide us to interesting loops in the code that the pro-
grammer should focus on for acceleration.

For the selected benchmarks described below, we choose
an illustrative configuration in which Peruse orders the loops
by decreasing order of data accessed in the loop body and we
only report the top 10 loops. Loops are given unique integer
identifiers from 0–N depending on the number of loops dis-
covered in the application by Peruse. We also demonstrate

 6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Listing 1: 2D Stencil compute for Seidel
74 f o r (t = 0 ; t <= t s t ep s − 1 ; t++)
75 f o r (i = 1 ; i<= n − 2 ; i++)
76 f o r (j = 1 ; j <= n − 2 ; j++)
77 A[i] [j] = (A[i −1] [j −1] +
78 A[i −1] [j] + A[i −1] [j +1]
79 + A[i] [j −1] + A[i] [j]
80 + A[i] [j +1] + A[i +1] [j −1]
81 + A[i +1] [j] + A[i +1] [j +1]) /9 . 0 ;

Table 3: Memory dependencies in seidel

Source Types Direction Vectors
seidel.c:77 → 77 WAR (*,0,0) (*,0,<) (*,0,>) (*,<,0) (*,<,<)

(*,<,>) (*,>,0) (*,>,<) (*,>,>)

the “Query Interface”, which helps filter out loops based on
a subset of desired characteristics, and show how clustering
loops using similar characteristics may be beneficial. Finally,
we present observations for the SPEC2006 benchmark suite.

4.1 Seidel
This benchmark is a 2-D Seidel stencil computation writ-

ten in C. It is a part of the Polybench benchmark suite,
which is used to evaluate polyhedral compilers and provides
a rigorous test of memory dependency resolution due to the
various array indices accessed in each step of the iteration
as shown in Listing 1. The other 2 loops present in this
microbenchmark are used for initialization and printing the
arrays on which they operate.

Peruse identifies the three loops present in the microbench-
mark. From the generated response the programmer can
immediately determine that the innermost loop pattern; ten
array elements in a strided fashion with a total memory
footprint, distinct local and global memory accesses, of 80
bytes. The memory dependencies for this benchmark are
represented as direction vectors as described previously in
Section 3.7.5 and indexed with a line pair tuple. Peruse
reports cross-references the dependencies against the cor-
responding source code line as shown in Table 3, the first
column indicates the source filename and the line number
pair for the dependencies. The second column indicates the
types of dependencies present in between these source line
numbers and the third column shows the direction vectors of
the individual array accesses across iterations and the direc-
tion of their carried dependence. We also note that there are
nine long latency instructions, floating point multiply oper-
ations, while there are 37 compute instructions and 47 total
instructions in the loop body2. The HTML report generated
by Peruse also specifies the line numbers at which the loops
and interesting characteristics within the loops, such as long
latency instructions, occur in the source. This enables the
user to quickly refer to the source for further clarification.
Seidel is a benchmark with very low cyclomatic complexity
and ≃ 100 lines of code.

4.2 LULESH
This benchmark is derived from the C language version of

LULESH 1.0[38] and extracts the CalcKinematicsForElems
method and its children. It is a benchmark written to stress

2All instructions are LLVM IR instructions.

specific features such as compiler auto-vectorization. It is
also carefully structured to exploit spatial locality and caching
by using a Structure-Of-Arrays for storing data while iter-
ating over them to perform molecular simulations on an un-
structured mesh.

Peruse identifies a loop (L0), which accesses 204 bytes of
data with a high compute-to-communication ratio (see Sec-
tion 3.7.1) of 6.0 as the first candidate based on the query.
This loop also calls a function called CalcElemVolume. Pe-
ruse further characterizes the function called and we find
that it is an idempotent function, (see Section 3.7.4), with
154 static instructions. This loop also contains another loop
(L1) with a small static trip count of eight. The loop body
of L1 is found to be idempotent in nature. Peruse identifies
for L0 a lack of memory allocations, which makes it suitable
for accelerator architectures.

Compiler Optimizations. Peruse, by default, does not per-
form any transformations to the source LLVM IR other than
those that are absolutely necessary to perform the analysis.
However, in the case of LULESH, we see that after turn-
ing on optimizations enabled by -O1 in LLVM, the loop L1

is fully unrolled. This results in an increase in the data
accessed by L0 from 204 bytes to 620 bytes. With optimiza-
tion level -O2 the function CalcElemVolume is also inlined
into the body of loop L0. Given the variability of observed
metrics with optimization level, Peruse offers the flexibil-
ity of running arbitrary optimization transformation passes
prior to the analysis and it can be used by the developer to
find opportunities as shown in the case of LULESH.

4.3 470.lbm
This is a SPEC2006 benchmark that implements the Lattice-

Boltzmann Method (470.lbm) to simulate incompressible flu-
ids in 3D. The benchmark contains ≃ 1100 lines of code and
is compiled to LLVM IR using clang. The query identifies
the top 10 loops in descending order of the amount of data
being accessed in the loop body.

The largest amount of data is found to be accessed in L10

at 1008 bytes, shown in Table 4. The loop ranked second
(L11), accesses 936 bytes of data. To evaluate the suitability
of L10 vs L11 we compare and contrast some of the charac-
teristics reported by Peruse (shown in Table 4). Loop L11

has characteristics favorable for acceleration such as the ab-
sence of non-loop branches and an idempotent loop body.
However, Peruse reports the presence of loop carried depen-
dencies (total 61) and a trip count of 10,000.

For L10, Peruse reports the presence of non-loop control
flow branches (see Table4). One of the branches diverges
to successors of 208 and 113 instructions. Another branch
guards successors of size 320 and 4 instructions. Since Pe-
ruse also indicates that this loop only has 1 exit, we know
that this branch is not used to evaluate a break condition.
Based on the line number indicated by Peruse (470.lbm.c:241)
we inspect the code to find that it resets variables ux,uy and
uz to default values based on a condition. While presenting
multiple execution paths, this does not indicate the pres-
ence of the classical problem of branch divergence for GPUs
due to the short divergent path length. Peruse indicates
the presence of 12 loop carried memory dependencies. With
L10 having 1300× the iteration count of L11 as well as a
lower number of loop carried memory dependencies, L10 is
selected as a better candidate loop for acceleration.

 7

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Listing 2: Data bound loop in 482.sphinx3
465 whi l e (ww < wEnd)
466 {
467 /∗ wwf2 = ww∗ f 2 ∗/
468 wwf2 . r =

f2−>r ∗ww−>r − f2−>i ∗ww−>i ;
469 wwf2 . i =

f2−>r ∗ww−>i + f2−>i ∗ww−>r ;
470 /∗ t1 = f1+wwf2 ∗/
471 t1−>r = f1−>r + wwf2 . r ;
472 t1−>i = f1−>i + wwf2 . i ;
473 /∗ t2 = f1−wwf2 ∗/
474 t2−>r = f1−>r − wwf2 . r ;
475 t2−>i = f1−>i − wwf2 . i ;
476 /∗ increment ∗/
477 f1 += 2∗k ; f 2 += 2∗k ;
478 t1 += k ; t2 += k ;
479 ww += k ;
480 }

In order to further investigate the suitability of the afore-
mentioned loops, we inspected the source at the indicated
locations (470.lbm.c:186 for L10 and 470.lbm.c:353 for
L11). Both candidate loops were found to be marked for
OpenMP execution after certain variables were marked as
private. The pragma for L10 indicates that 2 variables are
marked as private whereas it was 15 for L11. The #omp

pragma was wrapped in an #ifdef block that was not de-
fined while it was compiled into LLVM IR. Prior work[27]
also indicates that the prime candidate loop for offload is
L10. This demonstrates Peruse’s ability to independently
highlight acceleratable loops.

Loop Line Data (bytes) Instructions Memory Deps. Long Latency Ops
L10 186 1008 647 12 251
L11 353 936 605 61 248

Branches Trip Count Idempotent
L10 4 1300000 No
L11 0 10000 Yes

Table 4: L10 and L11 from 470.lbm

4.4 482.sphinx3
The 482.sphinx3 benchmark is a C benchmark based on

a widely recognized speech recognition engine by Carnegie
Mellon University consisting of ≃23K lines of code. The
most interesting loop highlighted by Peruse has a compute-
to-communicate ratio less than 0.25 making it unsuitable for
accelerator models with high offload communication cost.
Static analyses also shows that there are no statically allo-
cated arrays, and there are significant floating point opera-
tions. This is corroborated in the Listing 2 shown. Further-
more, the source listing shows that the memory accesses are
still sequential because the data is heap allocated as an array
of structures. Based on these observations, the loop may be
amenable to OpenMP style data partitioning or may bene-
fit from a Processing-In-Memory acceleration architectures
along the lines of VIRAM[36].

4.5 444.namd
The 444.namd benchmark is a C++ benchmark from the

SPEC benchmark suite and is a parallel program for the sim-

Listing 3: Loop instantation in 444.namd
#de f i n e NORMAL(X)
#de f i n e EXCLUDED(X)
#de f i n e MODIFIED(X) X
#inc lude ”ComputeNonbondedBase2 . h”
#undef NORMAL
#undef EXCLUDED
#undef MODIFIED

ulation of large biomolecular systems. It is a fairly complex
benchmark containing ≃5300 lines of code with 623 loops.

The SPEC website indicates the inner loop code is present
in ComputeNonbondedUtil.C but we find that the loop itself
is present in ComputeNonbondedBase2.h. The code for the
loop is instantiated using snippets similar to Listing 3 in
multiple places in the source. While structuring the source
in this manner may have the benefit of factoring out similar
code without runtime overhead, it leads to complex, unmain-
tainable code that is hard to analyze. It is challenging to
reason about the generated code while manually looking for
opportunities for acceleration. Peruse does not face these
challenges while analyzing the generated LLVM IR.

Peruse, identifies the top ten loops as variants of the loop
defined in ComputeNonbondedBase2.h. The loops access be-
tween 404–444 bytes of data with 277–317 instructions in
the loop body. Based on the presence of multiple loops with
similar characteristics discovered by Peruse, the developer
can synthesize specialized hardware as required to simulta-
neously target all the candidate loops.

Other large benchmarks. 403.gcc and 400.perlbench are
also challenging to analyze. These benchmarks employ more
advanced forms of preprocessor expansion as described for
444.namd. This results in a large amount of preprocessor
generated code that is difficult for humans to analyze. For
example, the average number of arguments for the functions
profiled by Peruse in 403.gcc was 1746 and 400.perlbench

was 457.

4.6 SPECCPU2006 Results
We now summarize our analysis of the benchmarks from

the SPEC2006 suite, starting with an overall categorization
shown in Table 5 based on the total number of loops present
in each of these applications. For this analysis, we omitted
the applications written in Fortran, and analyzed only the 19
benchmarks written in C/C++. Among the 7 benchmarks
with 1000 or more loops, 403.gcc topped the list with 4635
loops. Among the 5 benchmarks with 0-250 loops, 470.lbm
had only 23 loops in all. Peruse was able to identify all
the loops successfully, and these results match the data pre-
sented in [46]. Overall, from Peruse’s characterization of the
loops we observe the following:

1. Large variation in the number of loops per application
(min 23 – 470.lbm, max 4635 – 403.gcc)

2. Standard STL data structures are accessed in 7 out of
19 benchmarks

3. 13 of 19 applications have more than 75% of loops as
innermost loops

 8

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

of Loops Benchmarks
1000+ 403.gcc, 483.xalancbmk, 464.h264.refref, 400.perl-

bench, 453.povray, 445.gobmk, 447.dealII
251-1000 456.hmmer, 450.soplex, 444.namd, 482.sphinx3,

471.omnetpp, 433.milc, 458.sjeng
0-250 401.bzip2, 473.astar, 462.libquantum, 429.mcf,

470.lbm

Table 5: Number of loops in SPEC2006

Listing 4: Peruse filter query
{

’ be−true ’ : [’ innermost ’] ,
’ be−f a l s e ’ : [] ,
’ where ’ : [{ ’ loop−ex i t ’ : 1 } ,

{ ’mem−a l l o c ’ : 0 }] ,
’ order−by ’ :

[{ ’ loop−data−t i l e ’ : t rue } ,
{ ’memory−deps ’ : f a l s e }] ,

’ l im i t ’ : 10
}

Query Interface. For large workloads like those in SPEC-
CPU2006, it is challenging to examine the characteristics of
each individual loop to decide what to accelerate. To allevi-
ate this problem, Peruse provides an interface, dubbed the
“Query Interface,” to perform user-guided filtering on the
loops extracted from the source. Peruse was configured to
filter and order loops according to the following criteria:

1. Be the innermost loop

2. Have only one loop exit

3. Does not have any memory allocations

4. Order by the amount of data accessed in an iteration

5. Order by the number of loop carried memory depen-
dencies

This query represents some of the basic desirable charac-
teristics for a loop to be accelerated on a throughput oriented
architecture or an OpenMP like parallelization model. Fur-
ther filtering can be done based on the presence and number
of loop carried memory dependencies. The query was spec-
ified in the Peruse configuration file in the form of a JSON
object. The query is shown in Listing 4. The be-true and
be-false conditions check for characteristics that are True
and False respectively. Any number of characteristics can
be specified in the array. The where array includes objects
that define conditions to be checked. The order-by array
stores the characteristics by which the loops that pass the
prior filters are ordered. The boolean value True indicates
a descending order and vice-versa. While the absence of
loop carried memory dependencies are a strict requirement
for all data parallel execution models, due to the conserva-
tive nature of dependency analysis which may lead to false
positives, we use it as an ordering constraint.

As discussed previously in Peruse’s characterization of
470.lbm in Section 4.3 IV-C, L10 is found to be a suitable
candidate. In addition to being the loop with the largest
amount of data accessed, L10 also satisfies two other crite-
ria imposed by the query, namely, a) being the innermost

loop and b) having only one loop exit. On examining the
source for 470.lbm, it was found that the developers pro-
vided #omp parallel pragmas for the loop identified by Pe-
ruse. The previously observed loop carried dependencies are
either false positives or resolved by variable privatization.
This observation serves to validate Peruse’s ability to find
appropriate loops for a given user specified criteria.

For 471.omnetpp, the loop with the largest amount of data
accessed is found at cpar.cc:1032, consuming 518 bytes of
data per iteration. However, this loop does not meet the
criteria of having a single loop exit; it has 17. The loop that
does meet the criteria, in descending order of data being
accessed as well as satisfying both conditions, is found at
cpsquare.cc:225. This loop is found to have 260 bytes
consumed by 137 compute instructions.

Acceleratable Loops. To assess the suitability of the loops
for acceleration, we used the query interface of Peruse to
extract loops with a chosen set of characteristics. These
sample characteristics shown in Listing 4 are typically suited
for accelerators that do not share the address space with the
host, and the data is shipped to the accelerator from the
host. Table 6 shows the categorization of the loops within
the applications based on the query.

In Table 6 we show the topmost loop for each application
that matched the query criteria. Based on the detailed char-
acteristics presented by Peruse for each of the loops, we ob-
serve that only 8 out of the 19 loops are amenable for acceler-
ation based on this query. Among the loops amenable for ac-
celeration, 445.gobmk, 462.libquantum, and 444.namd have
data dependent branches and a large number of floating
point operations. Thus, they may benefit from using the
OpenMP model. 433.milc, 401.bzip2, and 482.sphinx3

do not have data dependent branches and may benefit from
SIMD-style acceleration. It is interesting to note that Holewin-
ski et al.[27] use dynamic trace analysis to demonstrate the
potential for auto vectorization and make a similar observa-
tion. Similarly, our assessment of suitability for acceleration
of the loops in 470.lbm and 464.h264.refref based on Pe-
ruse matches the observations in prior work[27] as well.

Among the loops not suited for acceleration based on this
query, 400.perlbench, 403.gcc, 453.povray, 456.hmmer,
and 458.sjeng are impacted by control flow dependence,
and 456.hmmer and 403.gcc are also impacted by loop car-
ried memory dependencies. Similarly, for 450.soplex, the
top candidate loop extracted by Peruse contains a large
number of branches, and in general the loops in the pro-
gram are small. Prior work also corroborates that without
restructuring the 450.soplex algorithm it is not accelerat-
able [10]. As demonstrated by this analysis, the query in-
terface of Peruse can be used to further refine and filter
the selected loops to match the set of desired characteristics
based on the nature of the hardware accelerator.

Offload Profitability. As explained in Section 3.7.1, one of
the key features to estimate the cost of offloading a loop to
an accelerator is the compute to communication (C-to-C)
ratio. Subsequent to the qualitative analysis done to select
the loops shown Table 6, we used Peruse to statically char-
acterize the C-to-C ratio for these selected loops. Dependent
on the target execution model’s memory system interface, a
lower or a higher C-to-C ratio may be preferred. For exam-
ple, for a constrained memory system interface such as that

 9

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Workload Filename Line Comments
401.bzip2 blocksort.c 854

Candidate loop matches the query provided and
has characteristics amenable for acceleration.

445.gobmk engine/reading.c 4171
464.h264.refref mbuffer.c 3475
470.lbm lbm.c 186
462.libquantum qec.c 241
433.milc m mat an.c 39
444.namd ComputeNonbondedBase2.h 12
482.sphinx3 new fe sp.c 465
473.astar Library.cpp 427

Candidate loop has a large number of function calls
reported by Peruse, some due to their object oriented
nature (C++ implementation).

447.dealII auto derivative function.cc 305
429.mcf pbla.c 59
483.xalancbmk TraverseSchema.cpp 4393
471.omnetpp libs/sim/cpsquare.cc 225
450.soplex spxshift.cc 671
400.perlbench scope.c 699

Candidate loop has large number of data dependent
control flow branches.

458.sjeng neval.c 493
403.gcc dbxout.c 2455
456.hmmer core algorithms.c 1534
453.povray fpmetric.cpp 235

Table 6: Finding acceleratable loops in SPEC2006

40
1.
bz
ip
2

47
3.
as
ta
r

44
7.
de
al
II

40
3.
gc
c

44
5.
go
bm
k

46
4.
h2
64
re
f

45
6.
hm
m
er

46
2.
lib
qu
an
tu
m

47
0.
lb
m

42
9.
m
cf

43
3.
m
ilc

44
4.
na
m
d

47
1.
om
ne
tp
p

40
0.
pe
rlb
en
ch

45
3.
po
vr
ay

45
8.
sj
en
g

45
0.
so
pl
ex

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm
k

Figure 1: Data accessed (bytes) and compute in-
structions per iteration of candidate loop

for SIMD execution models, a high C-to-C ratio helps amor-
tize the cost of loading a wide register once by performing
multiple operations on it.

Figure 1 shows the bytes accessed by a single loop itera-
tion along with the number of compute instructions. As they
are set to the same numerical scale, we see for all applica-
tions with the exception of 401.bzip2 (18% more) the ratio
of compute to communicate is less than 1, thus favoring the
throughput oriented model. On examining the 401.bzip2

source (shown in Listing 5), it can be seen that applying
SIMD specific transformations is almost trivial. For the re-
maining benchmarks, based on the observations presented
in Table 6, we can determine the nature of the suitable ex-
ecution model (OpenMP, SIMD, or Threads/warps).

To summarize, these case studies illustrate that static
characterization, especially of the loops within applications
is an effective means to assess suitability of these loops for
acceleration. Performing such static analyses allows us to
analyze large applications from the SPEC suite and extract

Listing 5: 401.bzip2 selected loop source code
853 f o r (; i >= 3 ; i −= 4) {
854 s = (s >> 8) | (b lock [i] << 8) ;
856 j = f tab [s] −1;
857 f tab [s] = j ;
858 ptr [j] = i ;

/∗ Loop unro l l ed 4x ∗/
871 }

interesting loops for further assessment of acceleration po-
tential.

5. PREDICTING ACCELERABILITY
Peruse is useful to identify loops that are candidates for

acceleration. For an end-user it is more desirable to get an
estimate of the potential speedup due to acceleration. In this
section, we describe an end-to-end framework to predict the
potential speedup of a loop nest when off-loaded to a fixed
function hardware accelerator.

Recently, Shao et al.[24] presented Aladdin, a pre-RTL,
power-performance accelerator modeling framework. Aladdin
provides a faster design space exploration relative to a con-
ventional RTL-based synthesis flows. However, there are
scalability limitations for Aladdin when used for large general-
purpose applications with large input sets. Scalability lim-
itations are inherent to any simulation-based approach to
determine area/power/performance benefits of acceleration.
To alleviate this, we have developed a machine-learning based
approach to predict the potential speedup. This model is
trained using features from static and dynamic (but target-
independent) workload characterization and classification based
on Aladdin’s output. The model is then used to predict the
speedup of any loop(s) from any general-purpose applica-
tion. Instead of an absolute value for the speedup of the
workload, we label the speedup as one of {Poor, Moderate,
Good, Excellent} based on the range {0–4×, 5–10×, 11–20×,
20×+}, respectively.

Figure 2 shows the end-to-end work flow for the machine-
learning based speedup prediction framework. For each ap-

 10

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

plication we extract the most amenable loops for accelera-
tion based on Peruse-based static analyses. An ISA indepen-
dent dynamic trace is subsequently generated for these se-
lected loops using the WIICA[57] LLVM based tracing tool.
In addition, the dynamic trace is fed as input to Aladdin[24]
to obtain the cycle time, area, and power for the loops. The
machine learning model is trained using the static and dy-
namic characteristics of these loops as features, and the out-
put of Aladdin as classes.

Evaluation Methodology.
The overall speedup prediction framework is independent

of the choice of the baseline. For illustration, we have chosen
a simple single-issue in-order model as a baseline for estimat-
ing speedup. The execution time of the dynamic trace is de-
termined by assuming that instructions can be issued every
cycle except memory access instructions which require 3 cy-
cles and floating point (divides and sqrt) operations require
10 cycles each. The cycle time of the fixed function hard-
ware accelerator is obtained by running the dynamic trace
along with appropriate Aladdin configurations as mentioned
in [24].

We use Weka[25], a popular Java based machine learning
toolkit, to select and train a machine learning model. The
training features include 27 dynamic features (instruction
counts by type), 11 static features (selected characteristics
from Table 2) and 5 configuration features which pertain to
the layout of the fixed function hardware unit designed by
Aladdin.

The training set is composed of 136 loops from Polybench
and SHOC[13]. The training data set consists of 3264 data
points when the loops are run with 24 different configura-
tions. The training data contained 180, 856, 1022 and 1206
samples for {Poor, Moderate, Good, Excellent} classes, re-
spectively.

Machine-Learning Model Selection.
We evaluated the accuracy of 6 classifiers using 10-fold

cross-validation (a technique used to determine how well the
training data will generalize to an independent result set).
To select a model, we also take into account the time taken
to train. Based on the data shown in Table 7 we chose Mul-
ticlass Alternating Decision Trees (LADTree – LogitBoost
ADTree). The Multiclass alternating decision tree technique
was proposed by Holmes et. al[28] and builds upon prior
work by Freund and Mason[19]. The original alternating
decision tree algorithm uses a combination of decision trees
with boosting that generates classification rules that are of-
ten smaller and easier to interpret than when using conven-
tional boosting methods such as AdaBoost[53]. Holmes et
al extended the original binary classification algorithm to an
effective multi-class algorithm which splits the problem into
several two-class problems.

We validated the statistical significance of the selected
model using a paired t-test[63] for a interval of 0.05 with
the NaiveBayes classifier as baseline. The NaiveBayes clas-
sifier is chosen as baseline as its accuracy is not affected by
the class distribution. Overall, the selected model had high
precision, moderate recall with the area under the ROC (Re-
ceiver Operator Characteristic [62]) curve of 0.92.

Model Validation.
We use the LADTree model to predict the acceleration

Model
Train Accuracy
(10-fold CV)

Normalized model
creation time

Naive Bayes 23.52% 3.5
Bayes Net 54.17% 5.5

SVC (RBF)[12] 51.66% 468
IB1[2] 74.82% 1
MLP 82.69% 1155

LADTree[28] 80.63% 61.5

Table 7: Model Selection

speedup potential for loops from 470.lbm and 433.milc.
These loops were selected by Peruse as candidates for accel-
eration as shown earlier in Table 6. For validation, dynamic
traces of these loops are fed to Aladdin to obtain the cycle
time, area and power for 24 different configurations result-
ing in 48 unique data points. Table 8 shows that the model
has a prediction accuracy of 79% (correctly predicts 38 out
of 48 instances).

Class True+ False- Precision Recall ROC
Poor 0 0 0 0 ?
Moderate 0.667 0.095 0.5 0.667 0.611
Good 0.455 0.081 0.625 0.455 0.526
Excellent 0.935 0.176 0.906 0.935 0.929
Wt. Avg. 0.792 0.144 0.791 0.792 0.858

Table 8: Test Accuracy by Class

It is important to note the high precision for classifying
Excellent loops which are of primary interest to the user.
The area under the ROC curve for the Excellent class is
also near perfect (0.929) indicating that the predictions are
made with low false positive rate which is highly desirable.
Considering that Peruse already filters out poor candidate
loops, it is no surprise that there are no instances of the
Poor class in the testing set. All the 10 misclassified test
instances belonged to the Moderate or the Good class.

6. RELATED WORK
Peruse builds upon and complements a long line of re-

search related to workload characterization and paralleliza-
tion.

Historically, much of this work stems from efforts at au-
tomated parallelization, and loop transformations. Tradi-
tionally, techniques such as feedback directed optimization
have been used as part compiler optimizations to deter-
mine opportunities for loop unrolling, loop tiling, or soft-
ware pipelining. Static program analysis for determining
opportunities for loop transformations have also been ex-
plored [40]. Techniques like dependence testing have long
been used to identify when different memory accesses do
not conflict [22] and are thus amenable to concurrent execu-
tion. These techniques still form a backbone for automated
parallelization today [1]. Similarly, idempotent regions of
code may be executed or speculatively re-executed multi-
ple times while always producing the same result, which is
also useful in parallelization[15, 14]. Note that these prop-
erties of parallelizable code are frequently also subsets of the
requirements for code to be acceleratable on a particular ma-
chine model. Thus, the results of these techniques are useful
when determining whether or not a workload is amenable for
a particular machine model. As the case studies show, Pe-

 11

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2: End to end machine learning based framework for accelerability estimation

ruse takes advantage of this knowledge and ensures that it
is conveniently available.

More recently, efforts at both parallelization and acceler-
ation have targeted specific semantic patterns, idioms, with
the goal of recognizing and accelerating these semantic units [47,
33, 45, 21]. Note that Peruse does not seek to automatically
discover or facilitate such parallelization, or acceleration of
semantic units, but it instead helps a developer to determine
in advance whether a program will be suitable for accelera-
tion using static analyses.

Recent tools for loop-level characterization such as ELI-
C [56] enable clustering workloads based on dynamic pro-
gram structure characteristics for a given architecture and
machine model. As demonstrated in the case studies, Peruse
uses static program analysis based characteristics to cluster
workloads and assess suitability for acceleration based on
the chosen execution model.

Most recent of all are works that help to facilitate the
search for a good accelerator design. For instance, Kim et
al. [34] examine the dynamic computation and memory ac-
cess behaviors of a program to determine whether accesses
or computation pose the greatest opportunity or barrier to
acceleration. Shao et al. [57] have used instruction set ar-
chitecture independent characteristics to explore the design
space of possible accelerators for a program and machine
model [24]. Note that Peruse is not merely orthogonal but
actually complementary to these techniques.

Prior work[30, 3, 39, 59] demonstrates that program char-
acteristics can be correlated with performance for general-
purpose architectures. Predicting parallel speedup estimates
using machine learning has been studied by Ipek et al.[31]
and more recently using an analytical model by Jeon et
al.[32]. Predicting performance using machine learning for
accelerators (FPGAs) has been recently studied by Meswani
et al[43]. Baldini et al[6] and Ardalani et al[4] study perfor-
mance prediction for GPUs based on micro-architectural be-
haviour of workloads on CPUs. The end-to-end framework
developed in this work also uses similar machine-learning
models to predict the speedup from acceleration of loops for
fixed-function hardware accelerator.

7. CONCLUSIONS
We developed Peruse, a program analysis tool to quickly

enable programmers and hardware developers to focus their
efforts on code regions amenable for specialization, espe-
cially loops and loop nests. Peruse’s program analyses open
up opportunities for large scale exploration of current appli-
cations to identify code regions with common acceleration
characteristics and help incrementally move specific code re-
gions from general-purpose processors to accelerators. Our
case studies show that Peruse can highlight program char-
acteristics that identify opportunities for acceleration and
provide a first-order assessment of the suitability of an ap-
plication for a given accelerator execution model. Using Pe-
ruse we analyzed unmodified applications from the SPEC
CPU benchmark suite and Polybench, HPC workloads, and
identified not only the loops amenable for acceleration but
also the potential challenges when porting the code to run
on accelerators.

Further, we used the workload characterization results of
Peruse as features and developed a machine-learning based
model to predict the potential speedup of a loop when of-
floaded to a fixed function hardware accelerator. We have
developed an end-to-end framework in which (a) Peruse is
used to characterize and extract the most amenable loops
for acceleration, (b) WIICA[58] is used to generate ISA inde-
pendent dynamic trace, (c) Aladdin[24] is used to obtain the
cycle time, area, and power for a fixed-function hardware ac-
celerator for each of these loops, and (d) a machine-learning
based model, trained using features from static and dy-
namic (but target-independent) workload characterization
and classification based on Aladdin’s output, is used to pre-
dict the potential speedup of loop from fixed-function hard-
ware acceleration. Our results show that the model predicts
the speedup of loops with an accuracy of 79%.

8. REFERENCES

[1] T. C. A. Kotha and R. Barua. Aesop: The
autoparallelizing compiler for shared memory
computers. Technical report, Department of Electrical
and Computer Engineering, University of Maryland,
College Park, April 2013.

 12

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[2] D. W. Aha, D. Kibler, and M. K. Albert.
Instance-based learning algorithms. Machine learning,
6(1):37–66, 1991.

[3] M. Annavaram, R. Rakvic, M. Polito, J. Y. Bouguet,
R. Hankins, and B. Davies. The fuzzy correlation
between code and performance predictability. In
Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on, pages 93–104, Dec 2004.

[4] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and
X. Zhu. Cross-architecture performance prediction
(xapp) using cpu code to predict gpu performance. In
Proceedings of the 48th International Symposium on
Microarchitecture, pages 725–737. ACM, 2015.

[5] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,
and Y. Zhou. Evaluating static analysis defect
warnings on production software. In Proceedings of the
7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE
’07, pages 1–8, New York, NY, USA, 2007. ACM.

[6] I. Baldini, S. J. Fink, and E. Altman. Predicting gpu
performance from cpu runs using machine learning. In
Proceedings of the 26th International Symposium on
Computer Architecture and High Performance
Computing, pages 114–122. ACM, 2006.

[7] T. Ball and J. R. Larus. Efficient Path Profiling. In
PROC of the 1996 MICRO, 1996.

[8] M. Boyer, J. Meng, and K. Kumaran. Improving gpu
performance prediction with data transfer modeling.
In Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1097–1106, May 2013.

[9] M. Burke and R. Cytron. Interprocedural dependence
analysis and parallelization. In Proceedings of the 1986
SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’86, pages 162–175, New York, NY, USA,
1986. ACM.

[10] P. Chen, L. Zhang, Y.-H. Han, and Y.-J. Chen. A
general-purpose many-accelerator architecture based
on dataflow graph clustering of applications. Journal
of Computer Science and Technology, 29(2):239–246,
2014.

[11] C. B. codes. Coral collaboration - oak ridge, argonne,
livermore, 2013.

[12] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[13] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith,
P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter. The scalable heterogeneous computing (shoc)
benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics
Processing Units, GPGPU ’10, pages 63–74, New
York, NY, USA, 2010. ACM.

[14] M. de Kruijf and K. Sankaralingam. Idempotent code
generation: Implementation, analysis, and evaluation.
In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization
(CGO), pages 1–12. IEEE, Feb. 2013.

[15] M. A. de Kruijf, K. Sankaralingam, and S. Jha. Static
analysis and compiler design for idempotent
processing. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and
Implementation - PLDI ’12, volume 47, page 475, New
York, New York, USA, June 2012. ACM Press.

[16] L. Eeckhout, H. Vandierendonck, and
K. De Bosschere. Quantifying the impact of input data
sets on program behavior and its applications. Journal
of Instruction-Level Parallelism, 5(1):1–33, 2003.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and
D. Burger. Neural acceleration for general-purpose
approximate programs. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 449–460. IEEE Computer

Society, 2012.
[18] T. Fahringer. Automatic Performance Prediction of

Parallel Programs. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[19] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In ICML, volume 99, pages
124–133, 1999.

[20] K. Ganesan, L. John, V. Salapura, and J. Sexton. A
performance counter based workload characterization
on blue gene/p. In Parallel Processing, 2008.
ICPP’08. 37th International Conference on, pages
330–337. IEEE, 2008.

[21] S. Garcia, D. Jeon, C. Louie, and M. B. Taylor.
Kremlin: Rethinking and rebooting gprof for the
multicore age. In PLDI ’11: Proceedings of the
Conference on Programming Language Design and
Implementation, 2011.

[22] G. Goff, K. Kennedy, and C.-W. Tseng. Practical
dependence testing. ACM SIGPLAN Notices,
26(6):15–29, June 1991.

[23] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani,
N. Satish, K. Sankaralingam, and C. Kim. Dyser:
Unifying functionality and parallelism specialization
for energy-efficient computing. IEEE Micro,
32(5):0038–51, 2012.

[24] Y. S. S. B. R. Gu and Y. W. D. Brooks. Aladdin: A
pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized
architectures.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[26] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10,
pages 37–47, 2010.

[27] J. Holewinski, R. Ramamurthi, M. Ravishankar,
N. Fauzia, L.-N. Pouchet, A. Rountev, and
P. Sadayappan. Dynamic trace-based analysis of
vectorization potential of applications. In PLDI, pages
371–382. ACM, 2012.

[28] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and
M. Hall. Multiclass alternating decision trees. In
Machine Learning: ECML 2002, pages 161–172.
Springer, 2002.

[29] K. Hoste and L. Eeckhout.
Microarchitecture-independent workload
characterization. IEEE Micro, 27(3):63–72, 2007.

[30] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges,
L. K. John, and K. De Bosschere. Performance
prediction based on inherent program similarity. In
Proceedings of the 15th international conference on
Parallel architectures and compilation techniques,
pages 114–122. ACM, 2006.

[31] E. Ipek, B. R. de Supinski, M. Schulz, and S. A.
McKee. An approach to performance prediction for
parallel applications. In Proceedings of the 11th
International Euro-Par Conference on Parallel
Processing, Euro-Par’05, pages 196–205, Berlin,
Heidelberg, 2005. Springer-Verlag.

[32] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor.
Kismet: Parallel Speedup Estimates for Serial
Programs. In OOPSLA ’11: Conference on
Object-Oriented Programming, Systems, Language and
Applications, 2011.

[33] M. Kawahito, H. Komatsu, T. Moriyama, H. Inoue,
and T. Nakatani. A new idiom recognition framework
for exploiting hardware-assist instructions. ACM

 13

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

SIGPLAN Notices, 41(11):382, Oct. 2006.
[34] M. A. Kim and S. A. Edwards. Computation vs.

memory systems: pinning down accelerator
bottlenecks. In Computer Architecture, pages 86–98.
Springer, 2012.

[35] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim,
and P. Ranganathan. Meet the walkers: accelerating
index traversals for in-memory databases. In
Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
468–479. ACM, 2013.

[36] C. Kozyrakis, J. Gebis, D. Martin, S. Williams,
I. Mavroidis, S. Pope, D. Jones, D. Patterson, and
K. Yelick. Vector iram: A media-oriented vector
processor with embedded dram. In Proc. Hot Chips
XII, 2000.

[37] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure,
and M. Wolfe. Dependence graphs and compiler
optimizations. In Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’81, pages 207–218,
New York, NY, USA, 1981. ACM.

[38] L. L. N. Lab. Livermore unstructured lagrangian
explicit shock hydrodynamics (lulesh) -
https://codesign.llnl.gov/lulesh.php, 2013.

[39] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code
signatures and performance. In Performance Analysis
of Systems and Software, 2005. ISPASS 2005. IEEE
International Symposium on, pages 236–247, March
2005.

[40] P. Lokuciejewski, D. Cordes, H. Falk, and
P. Marwedel. A fast and precise static loop analysis
based on abstract interpretation, program slicing and
polytope models. In Proceedings of the 7th annual
IEEE/ACM International Symposium on Code
Generation and Optimization, pages 136–146. IEEE
Computer Society, 2009.

[41] J. Menon, M. De Kruijf, and K. Sankaralingam. igpu:
exception support and speculative execution on gpus.
In ACM SIGARCH Computer Architecture News,
volume 40, pages 72–83. IEEE Computer Society,
2012.

[42] R. Merritt. Arm cto: power surge could

createâĂŹdark siliconâĂŹ. EE Times, Oct, 2009.
[43] M. Meswani, L. Carrington, D. Unat, A. Snavely,

S. Baden, and S. Poole. Modeling and predicting
application performance on hardware accelerators. In
Workload Characterization (IISWC), 2011 IEEE
International Symposium on, pages 73–73, Nov 2011.

[44] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.

Perry, J. S. Harper, and D. V. Wilcox. PaceâĂŤa
toolset for the performance prediction of parallel and
distributed systems. International Journal of High
Performance Computing Applications, 14(3):228–251,
2000.

[45] C. Olschanowsky, A. Snavely, M. R. Meswani, and
L. Carrington. PIR: PMaC’s Idiom Recognizer. In
2010 39th International Conference on Parallel
Processing Workshops, pages 189–196. IEEE, Sept.
2010.

[46] V. Packirisamy, A. Zhai, W.-C. Hsu, P.-C. Yew, and
T.-F. Ngai. Exploring speculative parallelism in
spec2006. In ISPASS, pages 77–88. IEEE, 2009.

[47] B. Pottenger and R. Eigenmann. Idiom recognition in
the Polaris parallelizing compiler. In Proceedings of the
9th international conference on Supercomputing - ICS
’95, pages 444–448, New York, New York, USA, July
1995. ACM Press.

[48] L.-N. Pouchet and U. Bondugula. Polybench 3.2, 2013.
[49] T. K. Prakash and L. Peng. Performance

characterization of spec cpu2006 benchmarks on intel
core 2 duo processor. ISAST Trans. Comput. Softw.
Eng, 2(1):36–41, 2008.

[50] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith:
Practical static race detection for c. ACM Trans.
Program. Lang. Syst., 33(1):3:1–3:55, Jan. 2011.

[51] W. Pugh. Uniform techniques for loop optimization.
In 5th International Conference on Supercomputing
(ICS’91), pages 341–352. ACM, 1991.

[52] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. Sage: self-tuning approximation for
graphics engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 13–24. ACM, 2013.

[53] R. E. Schapire. A brief introduction to boosting. In
Proceedings of the 16th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’99, pages
1401–1406, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[54] P. B. Schneck. Automatic recognition of vector and
parallel operations in a higher level language. In
Proceedings of the ACM Annual Conference - Volume
2, ACM ’72, pages 772–779, New York, NY, USA,
1972. ACM.

[55] J. Sewall, J. Chhugani, C. Kim, N. Satish, and
P. Dubey. Palm: Parallel architecture-friendly
latch-free modifications to b+ trees on many-core
processors, 2011.

[56] E. M. Shaccour and M. M. Mansour. ELI-C A
Loop-level Workload Characterization Tool. In Third
International Workshop on Performance Analysis of
Workload Optimized Systems (FastPath2014), Mar.
2014.

[57] Y. S. Shao and D. Brooks. ISA-independent workload
characterization and its implications for specialized
architectures. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), pages 245–255. IEEE, Apr. 2013.

[58] Y. S. Shao and D. Brooks. ISA-independent workload
characterization and its implications for specialized
architectures. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), pages 245–255. IEEE, Apr. 2013.

[59] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. SIGOPS Oper. Syst. Rev.,
36(5):45–57, Oct. 2002.

[60] H.-W. Tseng and D. M. Tullsen. Data-triggered
threads: Eliminating redundant computation. In High
Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pages
181–192. IEEE, 2011.

[61] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM Trans.
Program. Lang. Syst., 13(2):181–210, Apr. 1991.

[62] Wikipedia. Receiver operating characteristic :
http://en.wikipedia.org/wiki/receiver operating characteristic.

[63] Wikipedia. Student’s t-test :
http://en.wikipedia.org/wiki/student%27s t-test.

[64] M. J. Wolfe. Optimizing supercompilers for
supercomputers. MIT press, 1990.

[65] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput,
energy-efficient data partitioning. In Proceedings of the
40th Annual International Symposium on Computer
Architecture, pages 249–260. ACM, 2013.

