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Abstract—The end of Dennard Scaling has necessitated re-
search into the adoption of specialized architectures for offloading
specific code regions in applications. Recent works in accelerator
architectures have chosen diverse workloads and even diverse
code regions (within the same workload) to highlight the efficacy
of specific accelerator architectures. However this makes it
challenging to evaluate the power/performance benefits of each
accelerator. It is unclear in the era of specialization whether
it will be feasible to standardize a new set of kernels across
different architectural ideas. We present an alternative vision
where we identify and prepare “acceleratable” code regions from
existing CPU-based benchmark suites that are widely used. We
identify acceleratable paths by leveraging program analysis [1]
to precisely identify directed acyclic paths that are frequently
executed. We reconstruct the paths into a separate function
within the original binary and demarcate the accelerator region
to enable microarchitecture independent analysis and enable
precise profiling when executing the program on an architecture
simulator or instrumentation tool (e.g., Intel Pin). We extract
“accelerator” offload targets from frequently executed paths for
29 workloads across SPEC2000, SPECCPU2006, PARSEC and
PERFECT benchmark suites and demonstrate that character-
ization along paths is more precise than characterization at
coarser granularities in prior work. Overall, we analyze 356K
paths across 29 workloads and present statistics for the top 5
paths identified for offload in each application. We have also
generated a workload suite with the acceleratable code paths to
help computer architecture researchers.

I. INTRODUCTION

A central tenet of the modern accelerator proposals is to
split up programs into multiple phases and use a specialized
the architecture to target the behavior of each phase (e.g.,
SIMD, CGRA [12], specialized instructions [8]). With the end
of Dennard scaling, improving the performance of general-
purpose processors has proven to be quite challenging, placing
more emphasis on architects. While it is clear that customized
hardware accelerators exploiting specific program behaviors is
a promising way forward, it is not clear what the particular
accelerator microarchitecture is and how can we compare
alternative microarchitectures that target the same behavior.
We have made great strides in cases where the hardware needs
to target an already mature application domain (e.g., SIMD or
GPUs).

The objective in accelerators is typically to design a fixed-
function or programmable hardware that provides the necessary
support for a given program behavior with the lowest possible
overhead (area/power). In contrast, a general-purpose processor

tries to maximize performance across all applications for
a given cost. It is imperative that the computer architects
have access to the specific code regions within existing
target applications so that accelerators can be designed with
confidence. It is imperative for designers to understand not just
the statistical characteristics and microarchitectural behavior [9]
of the specific applications but also the precise functionality
and semantics of code when designing the custom hardware.
By design, accelerators are expected to provide functionality
and performance only for a narrow phase of the application.

However, many critical real world applications were devel-
oped for CPUs and do not have explicitly marked phases of
the program on which computer architects and designers can
focus the accelerator design effort. The absence of such real
world workloads makes it extremely challenging to reliably
develop accelerators hoping that they will be used in existing
or future applications. Unfortunately, there have not been
good benchmark suites. Current accelerator-specific suites [20]
are essentially important kernels from libraries in mature
application domains, but real world workloads are significantly
more complex. By design, different fixed-domain and fixed-
function accelerator proposals tend to pick algorithms and
kernels from a specific application domain (e.g., machine
learning or databases). It is not clear how to compare other
accelerator architectures that may target the same code region
or what code regions within a workload different accelerators
should even target. We suspect that in the workloads that prior
researchers have targeted [22], a specific behavior dominated
entire execution of the benchmark.

Benchmarking is a key tool for assessing computer systems.
A core benefit of benchmarks is to enable comparing design
alternatives during research or development and evaluating
power/performance tradeoffs. Inflection points in computing
systems (e.g., multicore, cloud computing) have resulted in
new benchmark suites (e.g., PARSEC [6], CLOUDSUITE [10]).
The pitfall and limitation is that these benchmarks may not
be representative of real-life applications and may be very
different from the application(s) of interest. An alternative
would be to use real-life applications of interest. Unfortunately,
real-life applications are very often challenging to set up with
the need for mature compiler, operating system and library
stacks (typically not available with hardware accelerators). This
introduces a chicken-and-egg problem: designing accelerators
suitable for applications requires the applications to convey
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Fig. 1. Using program analysis to demarcate and extract code paths [1] for
accelerators within CPU programs.

precisely what function needs to be accelerated in the first
place. We take an alternative approach. Instead of developing
a new benchmark suite for hardware acceleration, we high-
light specific code regions within existing applications that
accelerators should target.

The objective of this paper is to explore accelerators
in existing CPU-based applications and make it possible
for architects and designers to rapidly explore behaviors to
specialize and accelerate. We ensure that the accelerators
developed for the demarcated regions within each application
can be directly deployed within the original application. In
order to achieve this we have employed precise analysis of
the execution paths [1] and extracted the frequently executed
path into a separate function within the original program.
Converse to prior work that extracted only key performance
characteristics, we extract the frequently executed code region
paths that an accelerator should target. We have extracted the
acceleratable program paths embedded amongst many other
unimportant or unacceleratable code regions into functions that
accelerator compilers can target or use for simulation studies
(e.g., Pin instrumentation [16]). We demonstrate that extracting
such frequently executed paths in many cases requires carefully
navigating across the control flow and precisely characterizing
the biases of the control flow.

The approach that we propose overcomes an important
shortcoming of the existing benchmarks – benchmarks only
seek to retain the memory access patterns and control flow
behavior similar to the workload they represent [15]. Similarity
is typically characterized using statistics such as branch biases
or cache miss rates, which may suffice for studying microarchi-
tectural resource characteristics (e.g., branch prediction or cache
architectures). While benchmarks have sufficed to study general-
purpose microprocessor characteristics, they are too imprecise
to indicate the specific code behavior that should be accelerated.
We have extracted the specific code paths and ensure that
our extracted paths i) replicate the functional semantics of
the original application region ii) include the control flow
of the original program, and iii) mimic the memory access
behaviour of the original program. Figure 1 illustrates our
overall approach.

Overall we make the following contributions:

1) We have developed a robust LLVM-based compiler
infrastructure that precisely and automatically identifies
the frequently executed code paths in an application.
(§ II)

2) We comprehensively study the acceleration characteristics

(e.g., operation count, type, memory behavior) demon-
strated along program paths [1] and precisely characterize
the behavior (§ III).

3) We provide a derived benchmark suite with code paths
demarcated for acceleration and extracted and prepared
for analysis. These accelerator-independent code paths
can be used by researchers within existing simulation
(e.g., GEM5) and analysis tools (e.g., Intel Pin) (§ V)

II. MOTIVATION & METHODOLOGY

a) HLS Benchmarks vs Accelerator Benchmarks: : It is
important to clarify the intent of accelerator benchmark suites
(like this paper) against benchmarks used for improving high
level synthesis (HLS) toolchains. Examples of HLS suites
include Machsuite and CHSTONE. HLS benchmarks are a lot
simpler than CPU benchmarks and are kernelized to target HLS
toolchains (e.g., Xilinx’s Vivado). CPU benchmarks are rarely
written as a collection of kernels and hence HLS benchmarks
are not representative of CPU benchmarks. Compared to
HLS benchmarks, accelerator paths in SPEC and PARSEC
have significantly more complex code (i.e., more branching
behavior), are intermingled with many other code paths (i.e.,
applications are not dominated by an obvious set of kernels),
rarely have regular strided memory access patterns (i.e., many
levels of memory locality behavior), and have diverse compute
and memory characteristics. It is imperative that studies
designing hardware accelerators [23] for HLS benchmarks
be aware that their conclusions might not extend to existing
CPU workloads such as PARSEC and SPEC. Our workloads
are intended for those seeking to design accelerators that are
useful for existing CPU workloads, whether they pass through
HLS toolchains or not (infact due to the complexity of our
paths only 5 of our workloads pass through an existing HLS
toolchain [7]).

b) Methodology: Workloads often exhibit varied behavior
internally. For instance, a program may have different phases
of behavior representing initialization, computation, or cleanup.
These phases perform different tasks and, as a result, exhibit
different characteristics. However, analyzing an entire workload
at once blends the characteristics of these different tasks
together, obscuring the patterns in behavior of any one specific
task. When exploring which behaviors in a workload to
accelerate, these blended results may make it harder to tease
out the characteristics of a particular program segment that
capture desirable or undesirable behavior.

At a fine granularity of program segment, different acyclic
paths in a program may exhibit different characteristics than
other paths. A path is simply a sequence of instructions in a
program. An acyclic path is a sequence of instructions that
starts either at the beginning of a program or immediately
after a back edge in a control flow graph and terminates at
the end of a program or at the next back edge. Intuitively,
acyclic paths divide the behavior of a program into loop free
segments. For example, in Fig. 2, 1234 is an acyclic path
that represents entering a loop starting at 2 but not revisiting
2. The acyclic path 234 represents a single iteration of the
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Fig. 2. Acyclic paths in a control flow graph
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Fig. 3. Path Bias

loop starting at 2, while the acyclic path 235 exits the loop. A
function in a program comprises its constituent acyclic paths as
well as any back edges that connect them. Thus, characterizing
a workload’s behavior at the function granularity will combine
characteristics of all constituent paths within that function.

Some paths may be more beneficial to accelerate than others.
For instance, when most of the computation in a workload
happens along one path, it may be more fruitful to accelerate
that path than an alternative. Indeed, we have found that the real
world behavior of workloads can be highly biased toward some
acyclic paths over others. Fig. 3 examines the relative coverage
(in terms of dynamically executed instructions) of different
paths for the hottest functions in workloads as determined
by gperftools [11]. It presents the relative coverage of
a workload provided by the five most frequently executed
paths in the selected function vs the coverage of the workload
provided by all other paths in the function combined. Note
that for most workloads, these five hottest acyclic paths are
sufficient to cover the majority of workload’s behavior. In
many cases, the hottest path alone dominates the coverage.
Accelerating those particular paths can thus be more beneficial
than accelerating others. However, characterizing a workload
at a coarser granularity, such as an entire function or loop
body, will blend the characteristics across paths, once again
potentially obscuring information that may help in making
acceleration decisions. To overcome this problem, workloads
can be characterized along acyclic paths in order to capture
program behaviors within these fine grained program segments.

To examine the impact of characterizing paths of workloads,

we first identify the most frequently executed acyclic paths
within each workload. We then statically reconstruct each of
these paths into independent functions and collect machine
independent characteristics for each selected path in each
workload. This section discusses the benchmarks that we
used as well as our approach for selecting, reconstructing,
and characterizing program paths.

A. Selecting Paths to Characterize

Identifying frequently executed paths is an important part
of many analyses for both architecture and for software.
The classic approach to addressing this problem is to use
the efficient path profiling technique developed by Ball and
Larus [1]. This technique instruments a program to produce a
dynamic profile as it runs. The instrumentation process first
decomposes the control flow graph of a function into acyclic
paths and assigns each path a unique integer id in the range
from 0 to the total number of paths. Next, the program is
instrumented so that the id for a path is computed as that path
executes within the program, and the count or frequency of
a path is incremented once the end of the path is reached.
The end result of running an instrumented program is a count
of how many times each acyclic path through a function is
executed.

Efficient path profiling provides the foundation for our
approach to identifying which paths inside a workload to
characterize. For each workload in our benchmark suite, we
select the 5 most frequently executed acyclic paths through
the workload. Note, however, that the default efficient path
profiling algorithm does not identify the frequencies of paths
through an entire program, rather, it identifies the frequencies
of paths through individual functions. Thus, we must adapt
path profiling in order to profile acyclic paths at the program
level.

In order to profile acyclic paths at the program level, we
merge the control flow graphs of the entire program into a
single function. We perform this by running an aggressive
inlining pass on the LLVM intermediate representation (IR) of
a workload. This aggressive optimization performs function
inlining at every possible call site within the IR.

With inlining completed, efficient path profiling again
enables us to identify the most frequently executed paths in
the entire program. However, inlining introduces additional
engineering burdens that must first be addressed. In particular,
the number of acyclic paths through an entire program is larger
than the number of paths through just one function within a
program. As a result of inlining, the total number of paths need
not be representable as a single integer during the profiling
process. Column C1 in Table I shows the number of bits
required to represent all the paths for a particular workload.

After performing path profiling on the fully inlined version
of the program, we select the top five most frequently executed
paths from each workload. Note that recursive function calls and
calls through function pointers cannot necessarily be inlined.
These constructs partition the program into disjoint functions
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after aggressive inlining. In these cases, we select the hottest
of the remaining functions using gperftools.

B. Extracting identified paths

After identifying the most frequently executed paths inside
each workload, we extracted each such path into its own func-
tion for easier, more isolated study. For each path, we created a
new function containing the same sequence of instructions as in
the original path. Note that a branch instruction in the middle of
the path can force program execution to deviate from the path
once it has started. When this happens, the function returns
early, and the original version of the program is executed. Thus,
we call these exit guards. All incoming dependencies from
live-ins inside the path are hoisted to arguments of the function,
while all outgoing dependencies are returned through a struct
when the function completes. All store instructions are recorded
to an undo buffer that is replayed when the path exits early.
After extracting each path into its own function, we once again
run -O2 optimizations to remove any unnecessary operations
and simplify the path specific behavior. By extracting these
paths into their own functions, we have created durable artifacts
that may be reused by other analyses.

C. Metrics & ISA-independence

We base our workload metrics upon the prior work by
Shao [21]. In particular, we examine the unique opcodes, the
memory address entropy, and the number of guards or unique
branches. We also extend their metrics into analogues at the
path granularity. This includes path predictability, an analogue
of branch entropy, as well as the average number of read and
write operations across extracted paths for a workload, which
together provide an upper bound to the memory footprint.
Finally, we add metrics that are more relevant for analyzing
acyclic paths. This includes the number of live in and live out
values to the path, the number of φ operations removed when
extracting the path from the original control flow graph, and
the total number of static instructions in the path. More details
are provided in § III-B.

Our analysis operates on the level of LLVM IR. By utilizing
LLVM IR as our representation for characterization, we are able
to draw conclusions that better reflect the intrinsic semantics of
the original program. Prior work has shown this to be highly
desirable [21].

D. Characterizing at the Path Level

Static characteristics of the extracted paths are computed
directly from their corresponding functions. Note that applying
optimizations again after extracting each path into its own
function produces characteristics that are more reflective of
that particular path’s behavior. Any computation used only on
branches that exit from the path is removed, and the remaining
computation is simplified to more accurately reflect the behavior
of just the path of interest.

Dynamic characteristics of the path, namely the addresses of
loads and stores to heap allocated memory, are computed by re-
executing the entire workload with the path of interest outlined

into its respective extracted function. The addresses of heap
accesses are recorded using Pin for further characterization
via, e.g., memory entropy. Stack accesses are ignored, as they
reflect more architectural dependent characteristics rather than
intrinsic behaviors of the workloads of interest.

E. Benchmarks

We include 29 workloads from SPEC2000, SPEC2006,
PERFECT [2] and PARSEC [5]. 1 All benchmarks were
compiled with clang version 3.8 in order to generate LLVM
bitcode for instrumentation and analysis. We perform aggressive
loop unrolling (4×) with an increased threshold (2×) and allow
partial unrolling. Both before and after instrumentation, all
workloads were optimized at the level of -O2 with vectorization
disabled. Executable versions of the extracted workloads were
then compiled for X86-64 using LLVM 3.8.

III. CHARACTERIZATION

This section highlights the disparate behaviour of workloads
along frequently executed acyclic paths. Our approach is in
contrast to prior work [21], [26], which examines workloads as
a whole or at a function granularity. We find that considering
paths as the granularity for characterization yields insightful
information for specialization. We describe our methodology
in § II.

A. Making a case for Path-based Acceleration

The key to an effective offload abstraction is that it must
concisely capture varied dynamic phase behavior exhibited
by a workload. For instance, a program may have phases of
behavior representing initialization, computation, or cleanup
that exhibit different execution characteristics. Analyzing an
entire workload at once blends the characteristics of these
different tasks together, obscuring the patterns in behavior that
should be accelerated. When exploring which behaviors in
a workload to accelerate, these blended results may make it
harder to tease out the characteristics of a particular program
segment that capture desirable or undesirable behavior. We
show that paths executed by even a single program exhibit
diverse characteristics and are a natural fit for specialization. A
path is simply a sequence of dynamic instructions in a program.
Intuitively, acyclic paths divide the behavior of a program into
loop free segments. A function in a program comprises its
constituent acyclic paths as well as any back edges that connect
them. Thus, characterizing a workloads behavior at the function
granularity will combine characteristics of all constituent paths,
obscuring overall behavior. Furthermore, some paths may be
more beneficial to accelerate than others. For instance, when
most of the computation in a workload happens along one
path, it may be more fruitful to accelerate that path. Indeed,
we have found that the behavior of real workloads is highly
biased with only a few hot paths.

1We drop benchmark programs where the selected function contains language
features unsuitable for an accelerator: e.g.,setjmp and longjmp in 471.omnetpp
and C++ exceptions 447.dealII in 483.xalancbmk.
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Fig. 5. Benefits of Path-Based Execution. We have only shown a few workloads
due to lack of space. Opcode histogram of paths within a function; % indicates
exec coverage.

The histogram in the Figure 5 demonstrates that the granular-
ity of program analysis and offload abstraction fundamentally
biases what to include on the hardware accelerator. The opcode
distributions are shown for the top 3 hot paths in the most
important function the program, and the % indicates the total
execution coverage achieved by the paths. An example that
motivates our approach is 470.lbm. The function breakdown
shows an overall bias for FP (60% of dynamic ops). However,
we see that the only one path executes floating point instructions.
The remaining paths are dominated by MEM operations, and
they have no FP operations at all! An accelerator designed to
offload each path separately can be customized to support only
the operations in that path. Another interesting observation
is that while 453.povray is an INT-heavy function (60%+
operations), the hottest paths cover 87% of the dynamic
execution yet consist less than 20% of INT operations. Thus,
some cold path with INT ops is biasing the overall function.
Finally, we highlight freqmine and gcc as cases where the
overall function can be easily segregated into paths that access
memory and paths that compute, which permits the synthesis
of fully decoupled specialized accelerators. Another benefit of
path-based regions is saving of wasted work. Typical program
regions tend to have multiple execution paths due to control
flow and the relative hotness of these paths is exhibited only
by dynamic execution profiles. Current HLS tools use a static
approach to acceleration region formation and conservatively
offload multiple paths.

B. Characteristics Summary

Table I presents key characteristics for the workloads we
study. Column C1 indicates the number of bits required to
encode all the static paths that a workload may execute. We see
a large variance across workloads depending on their nature.
Some of the more complex workloads we study are swaptions
and 186.crafty with 73 and 63 bits required to enumerate all
paths. Path explosion is described in more detail in § II. Often,
floating point workloads demonstrate less complex structure.
Workloads such as 470.lbm, 183.equake and 482.sphinx3 all
require fewer than 5 bits to enumerate all paths.In comparison to
the potential number of paths in a workload, the actual number
of unique paths executed is often low. Only 11 workloads
have more than 1000 paths executed during program execution.
401.bzip2 has the largest number of paths executed with over
72K. The median number of paths executed is 250. Across
the workloads we study, there exists path bias, i.e few paths
executed far more frequently than others (see Figure 3).

Columns C3-C8 in Table I provide the maximum value
of a particular characteristic across the five most frequent
paths of a workload. This data combined with the normalized
visualization presented in Figure 6 allows the reader to derive
the absolute values for each of the 143 paths (across 29
workloads) presented. The observations are discussed in a
workload centric manner in § IV. Herein, we discuss the path
characteristics across workloads and their implications on
accelerator synthesis.

Path Length and Opcode Mix : Column C3 in Table I shows
the size of the largest path for each workload. The largest path
overall was from 183.equake with 962 IR instructions. The
median size of the largest path from each workload across the
suite was 232 instructions. 7 out of 29 workloads have fewer
than 100 operations, and four workloads have paths with more
than 500 operations.

Prior work such as BERET [13], has sought to accelerate
“Superblock” regions. Such characterization is often limited
by predetermined hardware constraints of the accelerator. Our
path based characterization yields different results as we do

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

9
.a

rt

1
8

1
.m

cf

1
8

3
.e

q
u

a
k

1
8

6
.c

ra
ft

1
9

7
.p

a
rs

e

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

4
.n

a
m

d

4
5

0
.s

o
p

le

4
5

3
.p

o
vr

a

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

4
.h

2
6

4
r

4
7

0
.l

b
m

4
8

2
.s

p
h

in

b
la

ck
sc

h
o

b
o
d

yt
ra

ck

d
w

t5
3

fe
rr

e
t

ff
t-

2
d

fl
u

id
a
n

im

fr
e
q

m
in

e

sa
r-

b
a
ck

p

sa
r-

p
fa

-i

st
re

a
m

cl
u

sw
a
p

ti
o
n

s

0.0

0.2

0.4

0.6

0.8

1.0

O
p

co
d

e
 D

is
tr

ib
u

ti
o
n

 (
%

) INT FP GEP MEM

Fig. 4. Opcode Distribution. The 5 bars for each workload represent the top-5 hot paths (L-R), GEP=pointer access.

121



TABLE I
WORKLOAD CHARACTERISTICS

C1 : log2(NumPaths) C2 : Exe. Paths (MAX5) C3 : Ins. C4 Cov. C5 : Guards C6 : Phi Nodes Removed
C7 : Live Vals C8 : Mem. Entropy (GEOMEAN5) C9 : Mem. RD C10 : Mem. WR C11 : Num Unique Opcodes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Workload Function Bits Exec Size Cov% � φ V↑↓ M.S M.↓ M.↑ {Op}
164.gzip longest match 10.4 813 70 59 7 11 6,6 16.0 4.2 0 11
175.vpr try route 79.8 5394 332 2 25 10 9,6 14.6 26.8 6.2 13.8
179.art match 19.8 6082 174 11 4 3 3,3 10.0 31.2 4 13.2
181.mcf price out impl 10.8 402 21 1 2 2 3,2 8.3 2.2 0 7.8
183.equake smvp 4.3 13 962 53 4 8 14,11 17.3 131.4 8.4 10.6
186.crafty EvaluatePawns 62.7 37443 67 03 14 12 11,4 6.9 4.8 0 10.6
197.parser table pointer 9.5 250 115 51 12 2 7,2 10.8 8.8 2.6 12.8
401.bzip2 BZ2 compressBlock 69.5 72561 784 05 71 6 9,8 18.3 100.8 4 11
403.gcc bitmap operation 11.9 21 100 67 6 13 9,7 10.0 4.4 2 8
429.mcf price out impl 9.7 141 24 1 2 2 3,2 8.9 3.0 0 8.8
444.namd calc pair energy fullelect 14.8 249 673 44 8 16 36,16 12.0 22.6 6.6 13.4
450.soplex vSolveUrightNoNZ 9.3 389 94 13 4 3 11,4 12.8 11.0 3.6 11.8
453.povray All Sphere Intersections 17.8 33377 331 86 10 10 15,12 6.0 16.6 5.8 17.6
456.hmmer P7Viterbi 13.8 36 490 71 8 7 20,2 16 47.2 20.2 9.2
458.sjeng gen 34.3 46971 95 05 13 4 3,3 5.4 6.8 0.8 10.6
464.h264ref dct luma 16x16 26.5 88 433 19 25 25 14,5 8.3 48.0 8 16
470.lbm LBM performStreamCollide 2.3 2 479 96 2 1 3,2 19.6 26.0 19 10.7
482.sphinx3 vector gautbl eval logs3 5.9 9 154 4 4 4 13,8 14.0 12.0 1.2 11.6
blackscholes BlkSchlsEqEuroNoDiv 22 34 314 08 32 52 9,4 2 0.4 0 20
bodytrack InsideError 18.8 64516 233 16 16 6 12,5 4.7 16.0 6.4 15.2
dwt53 dwt53 row transpose 5.9 12 122 37 4 1 9,2 19.0 9.8 5.4 12.6
ferret image segment 19.0 31136 485 04 32 54 8,7 17.3 7.2 4.8 12.6
fft-2d fft 27.9 46 232 24 28 5 8,1 17.2 11.2 8 14.4
fluidanimate ComputeForces 23.1 39838 143 13 12 4 18,3 14.0 13.8 1.2 14.8
freqmine conditional pattern base 8.4 133 94 13 4 3 6,8 10.2 8.0 3.6 9.4
sar-backp sar backprojection 77.7 4616 127 01 13 9 12,7 8.4 4.2 3.8 22.2
sar-pfa-in sar interp1 40 173 509 07 54 29 17,3 6.5 23.4 7.6 22.4
streamc pgain 11.4 74 249 41 16 3 11,6 13.6 27.4 0.6 13.6
swaptions HJM Swaption Blocking 72.5 11663 462 12 30 18 9,3 11.5 24.0 8 24.8

not have any preconceived notion of the specialization target.
Figure 4 shows the distribution of Opcodes across the five
frequent paths for each workload. We classify the opcodes as
INT, FP, MEM and GEP.

GEP operations in the LLVM IR are a succinct representation
of address generation logic. They define, in a platform
independent manner, the operations required to generate a
particular memory address prior to the access. Classifying
GEPs separately allows us to quantify “work” required to fetch
data independent of the actual compute on the data. Overall
Figure 4 shows that across the frequent paths in a workload
there may be significant differences in their opcode mix. GEP
and MEM operations tend to account for a significant fraction
of the work in the hot paths across workloads, on average 45%
of the number of operations. Only 49 of 143 paths have more
compute (INT+FP) operations than memory (GEP+MEM).

In some floating point workloads, amongst the top 5 paths,
there exist paths with no floating point operations at all.
Workloads such as 444.namd, 470.lbm and blackscholes have
at least one or more frequent paths devoid of floating point
operations.

Conversely, four of the top five paths in 175.vpr have
floating point operations (5% of total) on average. Similarly for
dwt53, 7% of the operations across three of the top five paths
are floating point operations (primary datatype was integer –
typedef int algPixel_t.

Another interesting observation is the presence

of paths with only GEP operations or GEP and
MEM operations but no compute. 470.lbm is a
workload with two paths that only compute GEP
expressions. One of the paths is the macro definition
SWEEP_START. The macro is defined shown in Listing 1.

Listing 1. Macro definition – 470.lbm
1 #define SWEEP_START(x1,y1,z1,x2,y2,z2) \
2 for(i = CALC_INDEX(x1, y1, z1, 0); \
3 i < CALC_INDEX(x2, y2, z2, 0); \
4 i += N_CELL_ENTRIES ) {

This particular case occurs in freqmine (2 paths) and 403.gcc
as well. Column C11 in Table I shows the average number of
unique IR instructions that are present in the top five paths.
The number ranges from '8 to 25 unique IR operations across
the workloads. Within workloads the variability is low. The
total number of opcodes present in the IR is 64 (LLVM 3.8).

Branches, Guards and φ : Column C4 in Table I shows the
number of conditional branches converted to guard checks for
exiting the middle of a path. Guards are discussed in more
detail in § II. The presented number is the maximum across
the five frequent paths for each workload. The largest paths,
401.bzip2 and sar-pfa-interp1 have 71 and 54 guard checks
respectively. All other workloads have 32 or fewer guards, and
13 workloads have <10 guards. The largest “guard density”
(guards divided by size) we find is 22% for 183.crafty.
φ’s in the LLVM IR are instructions that select incoming
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values based on the result of control flow operations. φ’s have
a direct impact on the complexity of specialization as observed
in prior work [4], [18]. Reasoning about specialization along
paths allows for φ simplification. The φs can be resolved since
the control flow is known a priori. This is proportional to the
number of branches removed (conditional and unconditional).
Workload behaviour determines the number of φs required (and
thus elided) at each branch.

The largest number of simplifications across 143 paths occur
in ferret. Note that in this case there is no path correspondence
with the other metrics such as the path size. The maximum
number of φ simplifications may occur along different paths.
Over 143 paths, the average number of φs simplified per
path is 0.68 (geomean). However, it can be particularly high
in some cases, with 6-8 φs simplified in 5 of 143 paths
(workloads – 164.gzip, 183.equake, 444.namd ×2, bodytrack).
Note that φ used as induction variables are not included in
this analysis.

Live Values : The live values of a path are the virtual register
values that are a) used within the path (live in) and b) defined
within the path and used outside (live out). Quantifying the live
input and output values (Column C7) provides a notion of the
overheads of data transfer into and out of the specialized unit.
We present the maximum number of live values (input and
output) per workload in Column C7. Memory state is treated
separately and discussed in the following paragraph.

Across workloads and their top five paths, the average
number of live values is 10. The maximum number of live
values was observed in 444.namd (36/16 – in/out). Across
benchmarks the least number of live values was observed for
181.mcf. 59 of 143 paths had fewer than 10 live values while
only 1 path had more than 25 (444.namd).

Memory Access Characteristics : We present characteristics
of the paths in Columns C8-C10 of Table I with respect to
memory behaviour. Column C8 enumerates the maximum
memory address entropy for the five most frequent paths per
workload. This metric has been used previously [21], [27]
to quantify the information content, i.e. the predictability of
memory addresses. Entropy in information theory encodes
the randomness of the variable. Herein, each unique location
accessed is treated as a value for the variable. Lower numbers
imply higher predictability. We analyze the memory address
entropy for heap accesses only. Shao et al.[21] find that ana-
lyzing heap+stack addresses together provides less meaningful
results. blackscholes has a pattern of reading from six arrays of
same size, computing a value, and writing the computed value
to a seventh array. The memory accesses are regular uniform
strides and result in low memory address entropy (2). More
details of the implementation are presented in § V.

Columns C9 and C10 present the average number of memory
read and memory write operations across the frequent paths.
The range of average number of memory reads extends from 0.4
(blackscholes) to 131.4 (183.equake) across the frequent paths
in our workloads. The blackscholes benchmark from PARSEC

TABLE II
PATH PREDICTABILITY

ID Freq Path Probability
1 100 A B C 100/(100 + 25) = 0.8
2 25 A B D 25/(100 + 25) = 0.2
3 10 F G 10/10 = 1.0

passes input as function arguments to the hot function, thus
reducing memory reads. The range of memory writes extends
from 1 to 20.2 operations (for workloads with non-zero memory
writes on average). For applications with zero writes (52 of 143
paths), we find paths that return live values rather than issue
stores to memory. Almost all paths are “consumer” in nature,
where the reads outnumber writes. One path (sar-backprojection,
rank 5) has more writes than reads. Only 11 of 143 paths
have more than 16 writes to memory. Note that this does not
distinguish aliasing memory locations. We only comment on
the number of operations per path.

IV. PATH CHARACTERISTIC VARIABILITY

In this section, we summarize our observations across
workloads. Figure 6 presents key characteristics of the five
most frequent paths across workloads. We present six features
to contrast paths within a workload, four of which are derived
statically. Prior work [21], [18] has indicated these features are
key to understanding amenability to acceleration. We observe
that different program paths exhibit different characteristics.

Description : Each radar chart represents a single workload.
Each outlined overlay on the chart represents a frequent path
(five in total). There are six dimensions on each radar chart.
In counter clockwise order, they are i) D1 : (Norm.) Number
of instructions ii) D2 : (Norm.) Number of guards, iii) D3
: (Norm.) Number of φ’s simplified, iv) D4 : (Norm.) Total
number of live values v) D5 : Predictability, vi) D6 : Coverage.

Of the six metrics enumerated, D1-D4 have been discussed
previously in § III-B. The radar charts present normalized
values. Absolute values per path can be derived from the max
values presented in Table I (C3-C7). D6 : Path predictability
is a new metric we introduce in this section. Path predictability
is the probability of following a known path given the starting
basic block. Consider the contrived path profile in Table II.
The predictability of each path is calculated as the execution
frequency of the path divided by the sum of the frequencies
of all other paths which begin at the same basic block. Paths
with IDs 1 and 2 start from basic block A. Based on their
respective frequencies, the probability of executing 1 to
completion is 0.8. Similarly, the probability of executing 2
to completion is 0.2. Larger numbers (max = 1) indicate
amenable paths for specialization since they exit less often.
Discussion : Overall, we observe that paths within workloads
have varied characteristics; i.e path outlines are clearly visible
in Figure 6. In a few cases there is overall similarity amongst
a subset of paths. Examples of such cases include *.mcf,
453.soplex, sar-*, and swaptions.
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Fig. 6. D1 : Total Ins, D2 : Guards, D3 : φ’s Simplified, D4 : Total Live Vals, D5 : Path Predictability D6 : Path Coverage
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Along dimension D1 (size) some workloads are linearly
spaced out. Examples of such workloads are 183.equake,
186.crafty, blackscholes and freqmine. Workloads such as
bodytrack and streamcluster have little to no variability in
the size of the longest path. This is frequently observed where
paths are spatially colocated.

D2 enumerates the number of guards introduced by elim-
inating conditional branches. Workloads such as 179.art,
456.hmmer, fft-2d and bodytrack show significant overlap along
this axis. 450.soplex has 4 paths with the same number of
guards (4). The same holds for four paths in streamcluster
(paths #1-#4). It is interesting to contrast D2 (guards) with
D1 (size). For example in 183.equake, four paths are linearly
spaced out across D1 and D2. 186.crafty has 3 paths of similar
size but differing number of guards. In 179.art, paths #3 and
#5 have similar number of guards but differ in size. One cause
where such behaviour is observed is due to unbalanced if
conditions.

In most workloads (21 of 29), the path with the largest
number of instructions is also the path with the largest number
of guard checks. This does not hold true for 186.crafty,
444.namd, 464.h264ref, blackscholes, ferret, fft-2d, freqmine
and sar-backprojection.

Dimension D3 enumerates the number of φ’s simplified.
183.crafty and 197.parser have a similar number of φs removed
while differing along axes D2 and D1. dwt53 has the same
number of φs simplified but differing number of branches
(converted to guards) in each path. fluidanimate along D1, D2
and D3 have interesting characteristics. Path #4 has large size
but significantly fewer guards and φ’s simplified.

The sum of live input and output values is shown along
dimension D4. It is interesting to compare the value along
D4 with D1, i.e whether the number of live in and live outs
is proportional to the size of the path. For 21 of the 29
workloads the largest path also has the largest number of
live values. The converse is true for streamcluster, fluidanimate,
450.soplex, ferret, bodytrack, fft-2d, 470.lbm and 464.h264ref.
For each workload there is significant variability across paths
with respect to live values. There are a few workloads where
3 or more paths have similar live values. Some examples are
ferret, bodytrack, 444.namd and 164.gzip. In many workloads,
accounting for the largest number of live values per path will
waste 25% or more of the local scratchpad. This holds in 9
of 29 applications; one path has 25% more live values than
others.

Path predictability D5 is the measure of probability a path
will execute to the end. Values close to one are desirable as
they imply lower overheads for specialization. Overheads are
incurred when partial execution on a specialized unit needs
to be rolled back. The path also needs to be evaluated in
software, restarting at the beginning. Five of the 29 workloads,
470.hmmer, 444.namd, 456.hmmer, fft-2d and freqmine, have
frequent paths that are perfectly predictable for the given input
data. In 17 out of 29 workloads, the largest path had near
perfect predictability. Conversely, 8 out of 29 workloads had
large paths with poor predictability (< 50%).

Path coverage is shown along D6. It is representative of
the amount of work each path does. It is computed as the
frequency weighted size of each path. Often the largest path
(D1) does not have the highest coverage. Some examples are
164.gzip, 401.bzip2, blackscholes and fluidanimate.

Overall, there are interesting paths that stand out across
workloads. Path #1 from freqmine is the largest path and has the
highest number of live values and coverage, yet it is perfectly
predictable for the given input. 444.namd has a few paths
oriented along the D2-D5, i.e paths that have many guards yet
are predictable. For some paths in bodytrack, streamcluster and
458.sjeng, increased φ simplification was observed along more
predictable paths. Path #1 from 470.lbm has the maximum
values along 5 of the 6 axes. While being the largest path,
with the highest number of guards and φ simplifications and
high coverage, it has fewer live values. Path #5 in 179.art
has the maximum along all axes apart from D5, i.e it is a
large (174 instructions) path with perfect predictability, few
φ’s simplified (3) and 6 live values. These characteristics make
the path amenable for specialization. On analysis of the source
for the particular path, we find lines 140–146 in scanner.c.
This is a segment from the function simtest2. The code for
the path is shown in Listing 2 (reformatted for typesetting).

Listing 2. Path from simtest2 – 179.art
1 Su = ((double)numf1s*su2-su*su)/
2 ((double)numf1s*((double)numf1s-1.0));
3 Su = sqrt(Su);
4 Sp = ((double)numf1s*sp2-sp*sp)/
5 ((double)numf1s*((double)numf1s-1.0));
6 Sp = sqrt(Sp);
7 numerator = (double) numf1s * sup - su * sp;
8 denom = sqrt((double) numf1s*su2 - su*su) *
9 sqrt((double) numf1s*sp2 - sp*sp);

10 r = (numerator+e)/(denom+e);

Changes in 181.mcf to 429.mcf in SPEC2000 to SPEC2006
are described [25] as ‘‘Because there have been no significant
errors or changes during the years 2000 - 2004, most
of the source code of the CPU2000 benchmark 181.mcf
was not changed in the transition to CPU2006 bench-
mark 429.mcf. However, several central type definitions
were changed for the CPU2006 version by the author”.
For mcf, overall path characteristics remain the same be-
tween versions. Path #5 has increased coverage. On anal-
ysis of the source, we find a new condition that changes
the memory reallocation criteria, which in turn make paths
in 429.mcf more amenable to specialization (increased
coverage). The condition is if( net->n_trips <=
MAX_NB_TRIPS_FOR_SMALL_NET ) in implicit.c.

470.lbm has a total of five dynamically executed paths. Of
these three are represented on the chart as area filled polygons.
The other two consist of a single basic block and have zeros
for dimensions D2, D3 and D4, i.e they have no guards, φ’s
simplified (artifact of being a single block path) and no live
values. They are perfectly predictable as there is only one basic
block. They are not shown on the radar chart.

To summarize, we find that distinct paths across workloads
have characteristics that are unique to the paths themselves.
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Analysis of characteristics at the function or coarser granularity
blends the characteristics from many paths and adds noise. For
the purpose of specialization, we advocate the adoption of a
path granularity analysis.

V. PATH DERIVED WORKLOAD SUITE

The previous sections have established the significance of
characterization at a path granularity and discussed at length
the characterization of a large number of workloads. The final
contribution of this work is the creation of a derived benchmark
suite to assist the computer architecture research community.
We have identified frequent acyclic paths across 29 workloads
drawn from popular benchmark suites. Using our LLVM tool
chain we have outlined the paths into independent functions free
from control flow (apart from guard checks). These can now
be easily analyzed using existing tools for dynamic analysis
such as Intel Pin. We will make available binaries of the
workloads with outlined frequent paths to interested researchers
in accordance with respective licensing terms.

A. Memory Address Entropy Analysis

In this section we describe how our derived suite assists
researchers perform precise analyses using existing tools. To
compute the memory address entropy along a path, we extended
an existing memory address tracing tool. A flag was added
to enable / disable trace dump at runtime. We then added
instrumentation to set and unset the flag at function invocation
and return via the IMG_AddInstrumentFunction(...)
interface. The code that targets the path is shown in Listing 3.

Listing 3. Pintool Modifications
1 string name = PIN_UndecorateSymbolName(

RTN_Name(rtn), UNDECORATION_NAME_ONLY);
2 if (name.find(string("__offload_func")) !=

string::npos) {
3 RTN_Open(rtn);
4 RTN_InsertCall(rtn, IPOINT_BEFORE, (

AFUNPTR) EnterROI, IARG_END);
5 RTN_InsertCall(rtn, IPOINT_AFTER, (

AFUNPTR) ExitROI, IARG_END);
6 RTN_Close(rtn);
7 }

All the outlined paths have the following naming convention
__offload_func_XXX where XXX is the identifier of the
path computed by the Ball-Larus algorithm [1] (see § II for
more details). When control flow reaches the starting basic
block of the outlined path, it optimistically chooses to invoke
the “path outlined as function”. Providing a clean abstraction
for the path allows us to write tools to target that particular
region only. Should control flow deviate from the path, the
function returns false to indicate a side exit, and the original
program code is executed after the original program state is
restored. The details of the implementation are beyond the
scope of this work.

VI. RELATED WORK

a) Benchmarks and Synthetic Workloads: Several ap-
proaches have been proposed to construct synthetic benchmarks
that are representative of the real workload for specific

microarchitectural behavior (e.g., cache misses [17] or branch
predictability [15]). These techniques typically measure the
microarchitectural runtime behavior of the real workload and
construct a set of synthetic code regions that place similar
demand on hardware resources. It is not sufficient for an
acceleratable region to simply demonstrate statistically similar
behavior to be useful for computer architects. The benchmark
must be functionally representative since accelerators by
definition are functionally specialized for the targeted code.
Prior work has largely focused on benchmarks that mimic
a real workload’s power consumption [14] memory locality
behavior [24], cache hit/miss ratios or even branch behavior.
Bell et al. [3] presented a framework for the automatically
synthesizing benchmarks from executables. They leveraged
statistical simulation theory and generate C-code and assembly
instructions that accurately model the workload attributes.
Performance cloning [15] is another technique that seeks to
more precisely capture the control flow and memory locality
predictability of the original application. In contrast, our goal
is to demarcate program regions in existing applications to
indicate explicitly to simulators and binary analysis tools the
code paths that are suitable for hardware acceleration. The
demarcated paths within the original program precisely capture
the functional behavior of the dynamic execution of the code
paths.

b) Accelerator Studies: : Current accelerator studies
have developed compiler infrastructure for studying existing
CPU workloads [12], [13], [19]. They identify specific code
behaviors within the workload targeted by their hardware and
have provided mechanisms to demarcate them in the application.
Unfortunately, the compiler approaches are closely tied in
with the hardware accelerator, and it is unclear whether the
identified code regions can be used by researchers developing
a different accelerator architecture. A key challenge with
current accelerator studies is that it is not feasible to compare
accelerator architectures directly since they may not even
be commenting on the same code region. Our focus has
been to approach the question of “acceleratability” from the
application’s perspective and demarcate code paths for which
specialization can directly provide performance and power
benefits to the application. This permits different accelerator
microarchitectures to be directly comparable since they target
a common code region. Machsuite [20] provided a set of
kernels drawn from various algorithms. It is unclear yet whether
accelerators should be targeted at fine-granularity regions such
as kernels and also whether kernels can be representative of real
programs that include frequent control and are not necessarily
written as a collection of kernel workloads. Our goal has been
to identify the code paths within existing CPU workloads that
accelerators should target.

VII. CONCLUSION

We advocate analysis at the granularity of acyclic program
paths when assessing the amenability for acceleration of a
workload. This is a new facet to the existing dynamic and
static approaches. We have shown how this can be done in
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a scalable manner via lightweight dynamic instrumentation
and static reconstruction. We have built a robust LLVM based
toolchain to automate the analysis and presented our results for
29 workloads drawn from SPEC2000, SPEC2006, PERFECT
and PARSEC. We have analysed ' 356K paths across
workloads and presented data for 143 paths. Our results show
that within a workload, paths have disparate characteristics.
Summarized characteristics at coarser granularities blend these
characteristics and may draw imprecise conclusions.
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