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Abstract

The fixed geometries of current cache designs do not adapt to the

working set requirements of modern applications, causing significant

inefficiency. The short block lifetimes and moderate spatial locality

exhibited by many applications result in only a few words in the

block being touched prior to eviction. Unused words occupy between

17—80% of a 64K L1 cache and between 1%—79% of a 1MB private

LLC. This effectively shrinks the cache size, increases miss rate, and

wastes on-chip bandwidth. Scaling limitations of wires mean that

unused-word transfers comprise a large fraction (11%) of on-chip

cache hierarchy energy consumption.

We propose Amoeba-Cache, a design that supports a variable num-

ber of cache blocks, each of a different granularity. Amoeba-Cache

employs a novel organization that completely eliminates the tag array,

treating the storage array as uniform and morphable between tags

and data. This enables the cache to harvest space from unused words

in blocks for additional tag storage, thereby supporting a variable

number of tags (and correspondingly, blocks). Amoeba-Cache adjusts

individual cache line granularities according to the spatial locality

in the application. It adapts to the appropriate granularity both for

different data objects in an application as well as for different phases

of access to the same data. Overall, compared to a fixed granularity

cache, the Amoeba-Cache reduces miss rate on average (geometric

mean) by 18% at the L1 level and by 18% at the L2 level and reduces

L1—L2 miss bandwidth by ≃46%. Correspondingly, Amoeba-Cache

reduces on-chip memory hierarchy energy by as much as 36% (mcf)

and improves performance by as much as 50% (art).

1 Introduction

A cache block is the fundamental unit of space allocation and data

transfer in the memory hierarchy. Typically, a block is an aligned

fixed granularity of contiguous words (1 word = 8bytes). Current pro-

cessors fix the block granularity largely based on the average spatial

locality across workloads, while taking tag overhead into consider-

ation. Unfortunately, many applications (see Section 2 for details)

exhibit low— moderate spatial locality and most of the words in a

cache block are left untouched during the block’s lifespan. Even for

applications with good spatial behavior, the short lifespan of a block

caused by cache geometry limitations can cause low cache utilization.

Technology trends make it imperative that caching efficiency im-

proves to reduce wastage of interconnect bandwidth. Recent reports

from industry [2] show that on-chip networks can contribute up to

28% of total chip power. In the future an L2 — L1 transfer can cost

up to 2.8× more energy than the L2 data access [14, 20]. Unused

words waste ≃ 11% (4%—21% in commercial workloads) of the

cache hierarchy energy.

∗This material is based upon work supported in part by grants from the National
Science and Engineering Research Council, MARCO Gigascale Research Center, Cana-
dian Microelectronics Corporation, and National Science Foundation (NSF) grants
CNS-0834451, CCF-1016902, and CCF-1217920.
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Figure 1: Cache designs optimizing different memory hierar-

chy parameters. Arrows indicate the parameters that are tar-

geted and improved compared to a conventional cache.

Figure 1 organizes past research on cache block granularity along

the three main parameters influenced by cache block granularity:

miss rate, bandwidth usage, and cache space utilization. Sector

caches have been used to [32, 15] minimize bandwidth by fetch-

ing only sub-blocks but miss opportunities for spatial prefetching.

Prefetching [17,29] may help reduce the miss rate for utilized sectors,

but on applications with low—moderate or variable spatial local-

ity, unused sectors due to misprediction, or unused regions within

sectors, still pollute the cache and consume bandwidth. Line distilla-

tion [30] filters out unused words from the cache at evictions using

a separate word-granularity cache. Other approaches identify dead

cache blocks and replace or eliminate them eagerly [19, 18, 13, 21].

While these approaches improve utilization and potentially miss rate,

they continue to consume bandwidth and interconnect energy for the

unutilized words. Word-organized cache blocks also dramatically

increase cache associativity and lookup overheads, which impacts

their scalability.

Determining a fixed optimal point for the cache line granularity at

hardware design time is a challenge. Small cache lines tend to fetch

fewer unused words, but impose significant performance penalties by

missing opportunities for spatial prefetching in applications with high

spatial locality. Small line sizes also introduce high tag overhead,

increase lookup energy, and increase miss processing overhead (e.g.,

control messages). Larger cache line sizes minimize tag overhead

and effectively prefetch neighboring words but introduce the nega-

tive effect of unused words that increase network bandwidth. Prior

approaches have proposed the use of multiple caches with differ-

ent block sizes [33,12]. These approaches require word granularity

caches that increase lookup energy, impose high tag overhead (e.g.,

50% in [33]), and reduce cache efficiency when there is good spatial

locality.
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In this paper, we propose a novel cache architecture, Amoeba-

Cache, to improve memory hierarchy efficiency by supporting fine-

grain (per-miss) dynamic adjustment of cache block size and the # of

blocks per set. To enable variable granularity blocks within the same

cache, the tags maintained per set need to grow and shrink as the # of

blocks/set vary. Amoeba-Cache eliminates the conventional tag array

and collocates the tags with the cache blocks in the data array. This

enables us to segment and partition a cache set in different ways: For

example, in a configuration comparable to a traditional 4-way 64K

cache with 256 sets (256 bytes per set), we can hold eight 32-byte

cache blocks, thirty-two 8-byte blocks, or any other collection of

cache blocks of varying granularity. Different sets may hold blocks

of different granularity, providing maximum flexibility across address

regions of varying spatial locality. The Amoeba-Cache effectively

filters out unused words in a conventional block and prevents them

from being inserted into the cache, allowing the resulting free space

to be used to hold tags or data of other useful blocks. The Amoeba-

Cache can adapt to the available spatial locality; when there is low

spatial locality, it will hold many blocks of small granularity and

when there is good spatial locality, it can adapt and segment the

cache into a few big blocks.

Compared to a fixed granularity cache, Amoeba-Cache improves

cache utilization by 90% - 99% for most applications, saves miss

rate by up to 73% (omnetpp) at the L1 level and up to 88% (twolf) at

the LLC level, and reduces miss bandwidth by up to 84% (omnetpp)

at the L1 and 92% (twolf) at the LLC. We compare against other

approaches such as Sector Cache and Line distillation and show that

Amoeba-Cache can optimize miss rate and bandwidth better across

many applications, with lower hardware overhead. Our synthesis

of the cache controller hit path shows that Amoeba-Cache can be

implemented with low energy impact and 0.7% area overhead for a

latency- critical 64K L1.

The overall paper is organized as follows: § 2 provides quantitative

evidence for the acuteness of the spatial locality problem. § 3 details

the internals of the Amoeba-Cache organization and § 4 analyzes

the physical implementation overhead. § 5 deals with wider chip-

level issues (i.e., inclusion and coherence). § 6 — § 10 evaluate

the Amoeba-Cache, commenting on the optimal block granularity,

impact on overall on-chip energy, and performance improvement.

§ 11 outlines related work.

2 Motivation for Adaptive Blocks

In traditional caches, the cache block defines the fundamental unit

of data movement and space allocation in caches. The blocks in the

data array are uniformly sized to simplify the insertion/removal of

blocks, simplify cache refill requests, and support low complexity

tag organization. Unfortunately, conventional caches are inflexible

(fixed block granularity and fixed # of blocks) and caching efficiency

is poor for applications that lack high spatial locality. Cache blocks

influence multiple system metrics including bandwidth, miss rate, and

cache utilization. The block granularity plays a key role in exploiting

spatial locality by effectively prefetching neighboring words all at

once. However, the neighboring words could go unused due to the

low lifespan of a cache block. The unused words occupy interconnect

bandwidth and pollute the cache, which increases the # of misses.

We evaluate the influence of a fixed granularity block below.

2.1 Cache Utilization

In the absence of spatial locality, multi-word cache blocks (typi-

cally 64 bytes on existing processors) tend to increase cache pollution

and fill the cache with words unlikely to be used. To quantify this

pollution, we segment the cache line into words (8 bytes) and track

the words touched before the block is evicted. We define utiliza-

tion as the average # of words touched in a cache block before it is

evicted. We study a comprehensive collection of workloads from

a variety of domains: 6 from PARSEC [3], 7 from SPEC2006, 2

from SPEC2000, 3 Java workloads from DaCapo [4], 3 commercial

workloads (Apache, SpecJBB2005, and TPC-C [22]), and the Firefox

web browser. Subsets within benchmark suites were chosen based on

demonstrated miss rates on the fixed granularity cache (i.e., whose

working sets did not fit in the cache size evaluated) and with a spread

and diversity in cache utilization. We classify the benchmarks into 3

groups based on the utilization they exhibit: Low (<33%), Moderate

(33%—66%), and High (66%+) utilization (see Table 1).

Table 1: Benchmark Groups

Group Utilization % Benchmarks

Low 0 — 33% art, soplex, twolf, mcf, canneal, lbm, om-

netpp

Moderate 34 — 66% astar, h2, jbb, apache, x264, firefox, tpc-c,

freqmine, fluidanimate

High 67 — 100% tradesoap, facesim, eclipse, cactus, milc,

ferret
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Figure 2: Distribution of words touched in a cache block. Avg.

utilization is on top. (Config: 64K, 4 way, 64-byte block.)

Figure 2 shows the histogram of words touched at the time of

eviction in a cache line of a 64K, 4-way cache (64-byte block, 8

words per block) across the different benchmarks. Seven applications

have less than 33% utilization and 12 of them are dominated (>50%)

by 1-2 word accesses. In applications with good spatial locality

(cactus, ferret, tradesoap, milc, eclipse) more than 50% of the evicted

blocks have 7-8 words touched. Despite similar average utilization

for applications such as astar and h2 (39%), their distributions are

dissimilar; ≃70% of the blocks in astar have 1-2 words accessed at the

time of eviction, whereas ≃50% of the blocks in h2 have 1-2 words

accessed per block. Utilization for a single application also changes

over time; for example, ferret’s average utilization, measured as the

average fraction of words used in evicted cache lines over 50 million

instruction windows, varies from 50% to 95% with a periodicity of

roughly 400 million instructions.
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2.2 Effect of Block Granularity on Miss Rate and Bandwidth

Cache miss rate directly correlates with performance, while under

current and future wire-limited technologies [2], bandwidth directly

correlates with dynamic energy. Figure 3 shows the influence of

block granularity on miss rate and bandwidth for a 64K L1 cache and

a 1M L2 cache keeping the number of ways constant. For the 64K

L1, the plots highlight the pitfalls of simply decreasing the block size

to accommodate the Low group of applications; miss rate increases

by 2× for the High group when the block size is changed from 64B

to 32B; it increases by 30% for the Moderate group. A smaller

block size decreases bandwidth proportionately but increases miss

rate. With a 1M L2 cache, the lifetime of the cache lines increases

significantly, improving overall utilization. Increasing the block size

from 64→256 halves the miss rate for all application groups. The

bandwidth is increased by 2× for the Low and Moderate.

Since miss rate and bandwidth have different optimal block granu-

larities, we use the following metric: 1
MissRate×Bandwidth to determine

a fixed block granularity suited to an application that takes both cri-

teria into account. Table 2 shows the block size that maximizes the

metric for each application. It can be seen that different applica-

tions have different block granularity requirements. For example, the

metric is maximized for apache at 128 bytes and for firefox (similar

utilization) at 32 bytes. Furthermore, the optimal block sizes vary

with the cache size as the cache lifespan changes. This highlights

the challenge of picking a single block size at design time especially

when the working set does not fit in the cache.

2.3 Need for adaptive cache blocks

Our observations motivate the need for adaptive cache line granu-

larities that match the spatial locality of the data access patterns in an

application. In summary:

• Smaller cache lines improve utilization but tend to increase miss

rate and potentially traffic for applications with good spatial local-

ity, affecting the overall performance.

• Large cache lines pollute the cache space and interconnect with un-

used words for applications with poor spatial locality, significantly

decreasing the caching efficiency.

• Many applications waste a significant fraction of the cache space.

Spatial locality varies not only across applications but also within

each application, for different data structures as well as different

phases of access over time.

Table 2: Optimal block size. Metric: 1
Miss−rate×Bandwidth

64K, 4-way

Block Benchmarks

32B
cactus, eclipse, facesim, ferret, firefox, fluidani-
mate,freqmine, milc, tpc-c, tradesoap

64B art

128B
apache, astar, canneal, h2, jbb, lbm, mcf, omnetpp, so-
plex, twolf, x264

1M, 8-way

Block Benchmarks

64B
apache, astar, cactus, eclipse, facesim, ferret, firefox,
freqmine, h2, lbm, milc, omnetpp, tradesoap, x264

128B art

256B canneal, fluidanimate, jbb, mcf, soplex, tpc-c, twolf

3 Amoeba-Cache : Architecture

The Amoeba-Cache architecture enables the memory hierarchy to

fetch and allocate space for a range of words (a variable granularity
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Figure 3: Bandwidth vs. Miss Rate. (a),(c),(e): 64K, 4-way L1.

(b),(d),(f): 1M, 8-way LLC. Markers on the plot indicate cache

block size. Note the different scales for different groups.

cache block) based on the spatial locality of the application. For

example, consider a 64K cache (256 sets) that allocates 256 bytes

per set. These 256 bytes can adapt to support, for example, eight

32-bytes blocks, thirty-two 8-byte blocks, or four 32-byte blocks and

sixteen 8-byte blocks, based on the set of contiguous words likely

to be accessed. The key challenge to supporting variable granularity

blocks is how to grow and shrink the # of tags as the # of blocks per

set vary with block granularity? Amoeba-Cache adopts a solution

inspired by software data structures, where programs hold meta-

data and actual data entries in the same address space. To achieve

maximum flexibility, Amoeba-Cache completely eliminates the tag

array and collocates the tags with the actual data blocks (see Figure 4).

We use a bitmap (T? Bitmap) to indicate which words in the data

array represent tags. We also decouple the conventional valid/invalid

bits (typically associated with the tags) and organize them into a

separate array (V? : Valid bitmap) to simplify block replacement and

insertion. V? and T? bitmaps both require 1 bit for very word (64bits)

in the data array (total overhead of 3%). Amoeba-Cache tags are

represented as a range (Start and End address) to support variable

granularity blocks. We next discuss the overall architecture.

3.1 Amoeba Blocks and Set-Indexing

The Amoeba-Cache data array holds a collection of varied gran-

ularity Amoeba-Blocks that do not overlap. Each Amoeba-Block is

a 4 tuple consisting of <Region Tag, Start, End, Data-

Block> (Figure 4). A Region is an aligned block of memory

of size RMAX bytes. The boundaries of any Amoeba-Block block

(Start and End) always will lie within the regions’ boundaries.

The minimum granularity of the data in an Amoeba-Block is 1 word
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Tag = Amoeba-Block in set). ②2 The data blocks that overlap with

the miss range are evicted and moved one-at-a-time to the MSHR

entry. ②3 Space is then allocated for the new block, i.e., it is treated

like a new insertion. ②4 A miss request is issued for the entire block

(START:0 — END:7) even if only some words (e.g., 0, 4, and 7)

may be needed. This ensures request processing is simple and only

a single refill request is sent. ②5 Finally, the incoming data block is

patched into the MSHR; only the words not obtained from the L1 are

copied (since the lower level could be stale).

Miss

(0:7)

R 1--3 R 5--6

0--7R

Fetch

MSHR

1
New
∩ Tag

0--7

2

==Region

StartNEW ≤ End
EndNEW > Start

MSHR

1--3 5--6X X

+ 
(0--7)

3

4

Refill (0:7)

Patch Xs

X

5

Identify Sub-Blocks

Insert New-Block

②1 Identify blocks overlapping with New block. ②2 Evict overlapping

blocks to MSHR. ②3 Allocate space for new block (treat it like a new

insertion). ②4 Issue refill request to lower level for entire block. ②5
Patch only newer words as lower-level data could be stale.

Figure 6: Partial Miss Handling. Upper: Identify relevant sub-

blocks. Useful for other cache controller events as well, e.g.,

recalls. Lower: Refill of words and insertion.

4 Hardware Complexity

We analyze the complexity of Amoeba-Cache along the following

directions: we quantify the additions needed to the cache controller,

we analyze the latency, area, and energy penalty, and finally, we study

the challenges specifically introduced by large caches.

4.1 Cache Controller

The variable granularity Amoeba-Block blocks need specific con-

sideration in the cache controller. We focus on the L1 controller

here, and in particular, partial misses. The cache controller manages

operations at the aligned RMAX granularity. The controller permits

only one in-flight cache operation per RMAX region. In-flight cache

operations ensure no address overlap with stable Amoeba-Blocks in

order to eliminate complex race conditions. Figure 7 shows the L1

cache controller state machine. We add two states to the default

protocol, IV_B and IV_C, to handle partial misses. IV_B is a

blocking state that blocks other cache operations to RMAX region

until all relevant Amoeba-Blocks to a partial miss are evicted (e.g.,

0–3 and 5–7 blocks in Figure 6). IV_C indicates partial miss com-

pletion. This enables the controller to treat the access as a full miss

and issue the refill request. The other stable states (I, V, D) and tran-

sient states (IV_Data and ID_Data) are present in a conventional

protocol as well. Partial-miss triggers the clean-up operations

(1 and 2 in Figure 6). Local_L1_Evict is a looping event that

keeps retriggering for each Amoeba-Block involved in the partial

miss; Last_L1_Evict is triggered when the last Amoeba-Block

involved in the partial miss is evicted to the MSHR. A key difference
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Cache controller states
State Description
NP Amoeba-Block not present in the cache.
V All words corresponding to Amoeba-Block present and valid

(read-only)
D Valid and atleast one word in Amoeba-Block is dirty (read-write)

IV B Partial miss being processed (blocking state)
IV Data Load miss; waiting for data from L2
ID Data Store miss; waiting for data. Set dirty bit.

IV C Partial miss cleanup from cache completed (treat as full miss)
Amoeba-specific Cache Events

Partial miss: Process partial miss.
Local L1 Evict: Remove overlapping Amoeba-Block to MSHR.
Last L1 Evict: Last Amoeba-Block moved to MSHR. Convert to full
miss and process load or store.
Bold and Broken-lines: Amoeba-Cache additions.

Figure 7: Amoeba Cache Controller (L1 level).

between the L1 and lower-level protocols is that the Load/Store event

in the lower-level protocol may need to access data from multiple

Amoeba-Blocks. In such cases, similar to the partial-miss event, we

read out each block independently before supplying the data (more

details in § 5.2).

4.2 Area, Latency, and Energy Overhead

The extra metadata required by Amoeba-Cache are the T? (1 tag

bit per word) and V? (1 valid bit per word) bitmaps. Table 3 shows

the quantitative overhead compared to the data storage. Both the T?

and V? bitmap arrays are directly proportional to the size of the cache

and require a constant storage overhead (3% in total). The T? bitmap

is read in parallel with the data array and does not affect the critical

path; T? adds 2%—3.5% (depending on cache size) to the overall

cache access energy. V? is referred only on misses when inserting a

new block.

Table 3: Amoeba-Cache Hardware Complexity.

Cache configuration
64K (256by/set) 1MB (512by/set) 4MB (1024by/set)

Data RAM parameters
Delay 0.36ns 2ns 2.5 ns
Energy 100pJ 230pJ 280pJ

Amoeba-Cache components (CACTI model)
T?/V? map 1KB 16KB 64KB

Latency 0.019ns (5%) 0.12ns (6%) 0.2ns (6%)
Energy 2pJ (2%) 8pJ (3.4%) 10pJ (3.5%)

LRU 1
8 KB 2KB 8KB

Lookup Overhead (VHDL model)
Area 0.7% 0.1%

Latency 0.02ns 0.035ns 0.04ns

% indicates overhead compared to data array of cache. 64K cache

operates in Fast mode; 1MB and 4MB operate in Normal mode.

We use 32nm ITRS HP transistors for 64K and 32nm ITRS LOP

transistors for 1MB and 4MB.
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We synthesized1 the cache lookup logic using Synopsys and quan-

tify the area, latency, and energy penalty. Amoeba-Cache is compat-

ible with Fast and Normal cache access modes [28, -access-mode

config], both of which read the entire set from the data array in par-

allel with the way selection to achieve lower latency. Fast mode

transfers the entire set to the edge of the H-tree, while Normal mode,

only transmits the selected way over the H-tree. For synthesis, we

used the Synopsys design compiler (Vision Z-2007.03-SP5).

Figure 5 shows Amoeba-Cacheś lookup hardware on the critical

path; we compare it against a fixed-granularity cache’s lookup logic

(mainly the comparators). The area overhead of the Amoeba-Cache

includes registering an entire line that has been read out, the tag

operation logic, and the word selector. The components on the

critical path once the data is read out are the 2-way multiplexers, the

∈ comparators, and priority encoder that selects the word; the T?

bitmap is accessed in parallel and off the critical path. Amoeba-Cache

is made feasible under today’s wire-limited technology where the

cache latency and energy is dominated by the bit/word lines, decoder,

and H-tree [28]. Amoeba-Cache’s comparators, which operate on

the entire cache set, are 6× the area of a fixed cache’s comparators.

Note that the data array occupies 99% of the overall cache area.

The critical path is dominated by the wide word selector since the

comparators all operate in parallel. The lookup logic adds 60% to

the conventional cache’s comparator time. The overall critical path

is dominated by the data array access and Amoeba-Cache’s lookup

circuit adds 0.02ns to the access latency and ≃ 1pJ to the energy of

a 64K cache, and 0.035ns to the latency and ≃2pJ to the energy of

a 1MB cache. Finally, Amoeba-Cache amortizes the energy penalty

of the peripheral components (H-tree, Wordline, and decoder) over a

single RAM.

Amoeba-Cache’s overhead needs careful consideration when im-

plemented at the L1 cache level. We have two options for handling

the latency overhead a) if the L1 cache is the critical stage in the

pipeline, we can throttle the CPU clock by the latency overhead to

ensure that the additional logic fits within the pipeline stage. This

ensures that the number of pipeline stages for a memory access does

not change with respect to a conventional cache, although all instruc-

tions bear the overhead of the reduced CPU clock. b) we can add an

extra pipeline stage to the L1 hit path, adding a 1 cycle overhead to

all memory accesses but ensuring no change in CPU frequency. We

quantify the performance impact of both approaches in Section 6.

4.3 Tag-only Operations

Conventional caches support tag-only operations to reduce data

port contention. While the Amoeba-Cache merges tags and data, like

many commercial processors it decouples the replacement metadata

and valid bits from the tags, accessing the tags only on cache lookup.

Lookups can be either CPU side or network side (coherence invalida-

tion and Wback/Forwarding). CPU-side lookups and writebacks (≃

95% of cache operations) both need data and hence Amoeba-Cache in

the common case does not introduce extra overhead. Amoeba-Cache

does read out the entire data array unlike serial-mode caches (we

discuss this issue in the next section). Invalidation checks and snoops

can be more energy expensive with Amoeba-Cache compared to a

conventional cache. Fortunately, coherence snoops are not common

in many applications (e.g., 1/100 cache operations in SpecJBB) as a

coherence directory and an inclusive LLC filter them out.

1We do not have access to an industry-grade 32nm library, so we synthesized at
a higher 180nm node size and scaled the results to 32 nm (latency and energy scaled
proportional to Vdd (taken from [36]) and V dd2 respectively).

4.4 Tradeoff with Large Caches
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Figure 8: Serial vs Normal mode cache.

Large caches with many words per set (≡ highly associative con-

ventional cache) need careful consideration. Typically, highly as-

sociative caches tend to serialize tag and data access with only the

relevant cache block read out on a hit and no data access on a miss.

We first analyze the the tradeoff between reading the entire set (nor-

mal mode), which is compatible with Amoeba-Cache and only the

relevant block (serial mode). We vary the cache size from 2M—8M

and associativity from 4(256B/set) — 32 (2048B/set). Under current

technology constraints (Figure 8), only at very high associativity does

serial mode demonstrate a notable energy benefit. Large caches are

dominated by H-tree energy consumption and reading out the entire

set at each sub-bank imposes an energy penalty when bitlines and

wordlines dominate (2KB+ # of words/set).

Table 4: % of direct accesses with fast tags

64K(256by/set) 1MB(512by/set) 2MB(1024 by/set)
# Tags/set 2 4 4 8 8 16
Overhead 1KB 2KB 2KB 16KB 16KB 32KB
Benchmarks
Low 30% 45% 42% 64% 55% 74%
Moderate 24% 62% 46% 70% 63% 85%
High 35% 79% 67% 95% 75% 96%

Amoeba-Cache can be tuned to minimize the hardware overhead

for large caches. With many words/set the cache utilization improves

due to longer block lifetimes making it feasible to support Amoeba-

Blocks with a larger minimum granularity (> 1 word). If we increase

minimum granularity to two or four words, only every third or fifth

word could be a tag, meaning the # of comparators and multiplex-

ers reduce to
Nwords/set

3 or
Nwords/set

5 . When the minimum granularity

is equal to max granularity (RMAX), we obtain a fixed granularity

cache with Nwords/set/RMAX ways. Cache organizations that collo-

cate all the tags together at the head of the data array enable tag-only

operations and serial Amoeba-Block accesses that need to activate

only a portion of the data array. However, the set may need to be

compacted at each insertion. Recently, Loh and Hill [23] explored

such an organization for supporting tags in multi-gigabyte caches.

Finally, the use of Fast Tags help reduce the tag lookups in the

data array. Fast tags use a separate traditional tag array-like structure

to cache the tags of the recently-used blocks and provide a pointer

directly to the Amoeba-Block. The # of Fast Tags needed per set

is proportional to the # of blocks in each set, which varies with the

spatial locality in the application and the # of bytes per set (more

details in Section 6.1). We studied 3 different cache configurations

(64K 256B/set, 1M 512B/set, and 2M 1024B/set) while varying the

number of fast tags per set (see Table 4). With 8 tags/set (16KB
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overhead), we can filter 64—95% of the accesses in a 1MB cache

and 55— 75% of the accesses in a 2MB cache.

5 Chip-Level Issues

5.1 Spatial Patterns Prediction

101 1101 1

.........
101 1100 1

PC or Region 

Tag

2

101 1100 1

==13

1

PC: Read 0xaddr

Miss Word

Block <Start, End>

PC or Region 

Tag

Figure 9: Spatial Predictor invoked on a Amoeba-Cache miss

Amoeba-Cache needs a spatial block predictor, which informs

refill requests about the range of the block to fetch. Amoeba-Cache

can exploit any spatial locality predictor and there have been many

efforts in the compiler and architecture community [7, 17, 29, 6]. We

adopt a table-driven approach consisting of a set of access bitmaps;

each entry is RMAX (maximum granularity of an Amoeba-Block)

bits wide and represents whether the word was touched during the

lifetime of the recently evicted cache block. On a miss, the predictor

will search for an entry (indexed by either the miss PC or region

address) and choose the range of words to be fetched on a miss

on either side (left and right) of the critical word. The PC-based

indexing also uses the critical word index for improved accuracy. The

predictor optimizes for spatial prefetching and will overfetch (bring

in potentially untouched words), if they are interspersed amongst

contiguous chunks of touched words. We can also bypass the

prediction when there is low confidence in the prediction accuracy.

For example, for streaming applications without repeated misses to a

region, we can bring in a fixed granularity block based on the overall

global behavior of the application. We evaluate tradeoffs in the design

of the spatial predictor in Section 6.2.

5.2 Multi-level Caches

We discuss the design of inclusive cache hierarchies including

multiple Amoeba-Caches; we illustrate using a 2-level hierarchy.

Inclusion means that the L2 cache contains a superset of the data

words in the L1 cache; however, the two levels may include different

granularity blocks. For example, the Sun Niagara T2 uses 16 byte L1

blocks and 64 byte L2 blocks. Amoeba-Cache permits non-aligned

blocks of variable granularity at the L1 and the L2, and needs to deal

with two issues: a) L2 recalls that may invalidate multiple L1 blocks

and b) L1 refills that may need data from multiple blocks at the L2.

For both cases, we need to identify all the relevant Amoeba-Blocks

that overlap with either the recall or the refill request. This situation

is similar to a Nigara’s L2 eviction which may need to recall 4 L1

blocks. Amoeba-Cache’s logic ensures that all Amoeba-Blocks from

a region map to a single set at any level (using the same RMAX for

both L1 and L2). This ensures that L2 recalls or L1 refills index

into only a single set. To process multiple blocks for a single cache

operation, we use the step-by-step process outlined in Section 3.5

( ②1 and ②2 in Figure 6). Finally, the L1-L2 interconnect needs 3

virtual networks, two of which, the L2→L1 data virtual network and

the L1→L2 writeback virtual network, can have packets of variable

granularity; each packet is broken down into a variable number of

smaller physical flits.

5.3 Cache Coherence

There are three main challenges that variable cache line granu-

larity introduces when interacting with the coherence protocol: 1)

How is the coherence directory maintained? 2) How to support

variable granularity read sharing? and 3) What is the granularity

of write invalidations? The key insight that ensures compatibility

with a conventional fixed-granularity coherence protocol is that a

Amoeba-Block always lies within an aligned RMAX byte region (see

§ 3). To ensure correctness, it is sufficient to maintain the coherence

granularity and directory information at a fixed granularity ≤ RMAX

granularity. Multiple cores can simultaneously cache any variable

granularity Amoeba-Block from the same region in Shared state; all

such cores are marked as sharers in the directory entry. A core that

desires exclusive ownership of an Amoeba-Block in the region uses

the directory entry to invalidate every Amoeba-Block corresponding

to the fixed coherence granularity. All Amoeba-Blocks relevant to an

invalidation will be found in the same set in the private cache (see set

indexing in § 3). The coherence granularity could potentially be <
RMAX so that false sharing is not introduced in the quest for higher

cache utilization (larger RMAX). The core claiming the ownership

on a write will itself fetch only the desired granularity Amoeba-Block,

saving bandwidth. A detailed evaluation of the coherence protocol is

beyond the scope of the current paper.

6 Evaluation

Framework We evaluate the Amoeba-Cache architecture with the

Wisconsin GEMS simulation infrastructure [25]; we use the in-order

processor timing model. We have replaced the SIMICS functional

simulator with the faster Pin [24] instrumentation framework to en-

able longer simulation runs. We perform timing simulation for 1

billion instructions. We warm up the cache using 20 million accesses

from the trace. We model the cache controller in detail including the

transient states needed for the multi-step cache operations and all the

associated port and queue contention. We use a Full— LRU replace-

ment policy, evicting Amoeba-Blocks in LRU order until sufficient

space is freed up for the block to be brought in. This helps decouple

our observations from the replacement policy, enabling a fairer com-

parison with other approaches (Section 9). Our workloads are a mix

of applications whose working sets stress our caches and includes

SPEC- CPU benchmarks, Dacapo Java benchmarks [4], commercial

workloads (SpecJBB2005, TPC-C, and Apache), and the Firefox web

browser. Table 1 classifies the application categories: Low, Moderate,

and High, based on the spatial locality. When presenting averages of

ratios or improvements, we use the geometric mean.

6.1 Improved Memory Hierarchy Efficiency

Result 1:Amoeba-Cache increases cache capacity by harvesting

space from unused words and can achieve an 18% reduction in both

L1 and L2 miss rate.

Result 2:Amoeba-Cache adaptively sizes the cache block granularity

and reduces L1↔L2 bandwidth by 46% and L2↔Memory bandwidth

by 38%.

In this section, we compare the bandwidth and miss rate properties

of Amoeba-Cache against a conventional cache. We evaluate two

types of caches: a Fixed cache, which represents a conventional

set-associative cache, and the Amoeba-Cache. In order to isolate the

benefits of Amoeba-Cache from the potentially changing accuracy

of the spatial predictor across different cache geometries, we use

utilization at the next eviction as the spatial prediction, determined

from a prior run on a fixed granularity cache. This also ensures that

the spatial granularity predictions can be replayed across multiple

simulation runs. To ensure equivalent data storage space, we set

the Amoeba-Cache size to the sum of the tag array and the data array

in a conventional cache. At the L1 level (64K), the net capacity of
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the Amoeba-Cache is 64K + 8*4*256 bytes and at the L2 level (1M)

configuration, it is 1M + 8*8*2048 bytes. The L1 cache has 256 sets

and the L2 cache has 2048 sets.
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Figure 10: Fixed vs. Amoeba (Bandwidth and Miss Rate). Note

the different scale for different application groups.

Figure 10 plots the miss rate and the traffic characteristics of the

Amoeba-Cache. Since Amoeba-Cache can hold blocks varying from

8B to 64B, each set can hold more blocks by utilizing the space

from untouched words. Amoeba-Cache reduces the 64K L1 miss

rate by 23%(stdev:24) for the Low group, and by 21%(stdev:16)

for the moderate group; even applications with high spatial locality

experience a 7%(stdev:8) improvement in miss rate. There is a

46%(stdev:20) reduction on average in L1↔L2 bandwidth. At the

1M L2 level, Amoeba-Cache improves the moderate group’s miss

rate by 8%(stdev:10) and bandwidth by 23%(stdev:12). Applications

with moderate utilization make better use of the space harvested from

unused words by Amoeba-Cache. Many low utilization applications

tend to be streaming and providing extra cache space does not help

lower miss rate. However, by not fetching unused words, Amoeba-

Cache achieves a significant reduction (38%(stdev:24) on average) in

off-chip L2↔Memory bandwidth; even High utilization applications

see a 17%(stdev:15) reduction in bandwidth. Utilization and miss

rate are not, however, always directly correlated (more details in

§ 8).

With Amoeba-Cache the # of blocks/set varies based on the granu-

larity of the blocks being fetched, which in turn depends on the spatial

locality in the application. Table 5 shows the avg.# of blocks/set. In

applications with low spatial locality, Amoeba-Cache adjusts the

block size and adapts to store many smaller blocks. The 64K L1

Table 5: Avg. # of Amoeba-Block / Set

# Blocks/Set 64K Cache, 288 B/set

4—5 ferret, cactus, firefox, eclipse, facesim, freqmine, milc, astar
6—7 tpc-c, tradesoap, soplex, apache, fluidanimate
8—9 h2, canneal, omnetpp, twolf, x264, lbm, jbb

10—12 mcf, art

1M Cache, 576 B/set

3—5 eclipse, omnetpp
8—9 cactus, firefox, tradesoap, freqmine, h2, x264, tpc-c

10—11 facesim, soplex, astar, milc, apache, ferret
12—13 twolf, art, jbb, lbm , fluidanimate
15—18 canneal, mcf
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Figure 11: Distribution of cache line granularities in the 64K

L1 and 1M L2 Amoeba-Cache. Avg. utilization is on top.

Amoeba-Cache stores 10 blocks per set for mcf and 12 blocks per

set for art, effectively increasing associativity without introducing

fixed hardware overheads. At the L2, when the working set starts

to fit in the L2 cache, the set is partitioned into fewer blocks. Note

that applications like eclipse and omnetpp hold only 3—5 blocks

per set on average (lower than conventional associativity) due to

their low miss rates (see Table 8). With streaming applications (e.g.,

canneal), Amoeba-Cache increases the # of blocks/set to >15 on

average. Finally, some applications like apache store between 6—7

blocks/set with a 64K cache with varied block sizes (see Figure 11):

approximately 50% of the blocks store 1-2 words and 30% of the

blocks store 8 words at the L1. As the size of the cache increases and

thereby the lifetime of the blocks, the Amoeba-Cache adapts to store

larger size blocks as can be seen in Figure 11.
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ALIGNED: fixed-granularity cache (64B blocks). FINITE: Amoeba-Cache with a REGION predictor (1024 entry predictor table and 4K region size).

INFINITE: Amoeba-Cache with an unbounded predictor table (REGION predictor).FINITE+FT is FINITE augmented with hints for predicting a default

granularity on compulsory misses (first touches). HISTORY: Amoeba-Cache uses spatial pattern hints based on utilization at the next eviction, collected from a

prior run.

((PC >> 3) << 3)+
(addr%64)

8 . and b) a Region-based (REGION)

approach that is based on the intuition that similar data objects tend

to be allocated in contiguous regions of the address space and tend

to exhibit similar spatial behavior. We compared the miss rate and

bandwidth properties of both the PC (256 entries, fully associative)

and REGION (1024 entries, 4KB region size) predictors. The size

of the predictors was selected as the sweet spot in behavior for each

predictor type. For all applications apart from cactus (a high spatial

locality application), REGION-based prediction tends to overfetch

and waste bandwidth as compared to PC-based prediction, which has

27% less bandwidth consumption on average across all applications.

For 17 out of 22 applications, REGION-based prediction shows 17%

better MPKI on average (max: 49% for cactus). For 5 applications

(apache, art, mcf, lbm, and omnetpp), we find that PC demonstrates

better accuracy when predicting the spatial behavior of cache blocks

than REGION and demonstates a 24% improvement in MPKI (max:

68% for omnetpp).

7.2 Predictor Table

We studied the organization and size of the pattern table using the

REGION predictor. We evaluated the following parameters a) region

size, which directly correlates with the coverage of a fixed-size table,

and b) the size of the predictor table, which influences how many

unique region patterns can be tracked, and c) the # of bits required to

represent the spatial pattern.

Large region sizes effectively reduce the # of regions in the work-

ing set and require a smaller predictor table. However, a larger region

is likely to have more blocks that exhibit varied spatial behavior

and may pollute the pattern entry. We find that going from 1KB

(4096 entries) to 4KB (1024 entries) regions, the 4KB region gran-

ularity decreased miss rate by 0.3% and increased bandwidth by

0.4% even though both tables provide the same working set cover-

age (4MB). Fixing the region size at 4KB, we studied the benefits

of an unbounded table. Compared to a 1024 entry table (FINITE

in Figure 6.2), the unbounded table increases miss rate by 1% and

decreases bandwidth by 0.3% . A 1024 entry predictor table (4KB re-

gion granularity per-entry) suffices for most applications. Organizing

the 1024 entries as a 128-set×8-way table suffices for eliminating

associativity related conflicts (<0.8% evictions due to lack of ways).

Focusing on the # of bits required to represent the pattern table,

we evaluated the use of 4-bit saturation counters (instead of 1-bit

bitmaps). The saturation counters seek to avoid pattern pollution

when blocks with varied spatial behavior reside in the same region.

Interestingly, we find that it is more beneficial to use 1-bit bitmaps

for the majority of the applications (12 out of 22); the hysteresis

introduced by the counters increases training period. To summarize,

we find that a REGION predictor with region size 4KB and 1024

entries can predict the spatial pattern in a majority of the applications.

CACTI indicates that the predictor table can be indexed in 0.025ns

and requires 2.3pJ per miss indexing.

7.3 Spatial Pattern Training

A widely-used approach to training the predictor is to harvest the

word usage information on an eviction. Unfortunately, evictions may

not be frequent, which means the predictor’s training period tends to

be long, during which the cache performs less efficiently and/or that

the application’s phase has changed in the meantime. Particularly

at the time of first touch (compulsory miss to a location), we need

to infer the global spatial access patterns. We compare the finite

region predictor (FINITE in Figure 6.2) that only predicts using

eviction history, against a FINITE+FT: this adds the optimization

of inferring the default pattern (in this paper, from a prior run) when

there is no predictor information. FINITE+FT demonstrates an

avg. 1% (max: 6% for jbb) reduction in miss rate compared to

FINITE and comes within 16% the miss rate of HISTORY. In

terms of bandwidth FINITE+FT can save 8% of the bandwidth (up
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Figure 14: Relative miss rate and bandwidth for different

caches. Baseline (1,1) is the Fixed-2x design. Labels: • Fixed-

2x, ◦ Sector approaches. ∗ : Multi$, △ Amoeba. (a),(b) 64K

cache (c),(d) 1M cache. Note the different Y-axis scale for each

group.

tions. On the high utilization group, all designs other than Sector have

comparable miss rates. Amoeba-Cache improves miss rate to within

5%—6% of the Fixed-2× for the low group and within 8%—17%

for the moderate group. Compared to the Fixed-2×, Amoeba-Cache

also lowers bandwidth by 40% (64K cache) and 20% (1M cache).

Compared to Sector-Pre (with prefetching), Amoeba-Cache is able

to adapt better with flexible granularity and achieves lower miss rate

(up to 30% @ 64K and 35% @ 1M). Multi$’s benefits are propor-

tional to the fraction of the cache organized as a WOC; Multi$-50

(18-way@64K and 36-way@1M) is needed to match the miss rate

of Amoeba-Cache. Finally, in the moderate group, many applica-

tions exhibit strided access. Compared to Multi-$’s WOC, which

fetches individual words, Amoeba-Cache increases bandwidth since

it chooses to fetch the contiguous chunk in order to lower miss rate.

10 Multicore Shared Cache

We evaluate a shared cache implemented with the Amoeba-Cache

design. By dynamically varying the cache block size and keeping out

unused words, the Amoeba-Cache effectively minimizes the footprint

of an application. Minimizing the footprint helps multiple applica-

tions effectively share the cache space. We experimented with a

1M shared Amoeba-Cache in a 4 core system. Table 7 shows the

application mixes; we chose a mix of applications across all groups.

We tabulate the change in miss rate per thread and the overall change

in bandwidth for Amoeba-Cache with respect to a fixed granularity

cache running the same mix. Minimizing the overall footprint enables

a reduction in the miss rate of each application in the mix. The com-

mercial workloads (SpecJBB and TPC-C) are able to make use of the

space available and achieve a significant reduction in miss rate (avg:

18%). Only two applications suffered a small increase in miss rate

(x264 Mix#2: 2% and ferret Mix#3: 4%) due to contention. The over-

all L2 miss bandwidth significantly improves, showing 16%—39%

reduction across all workload mixes. We believe that the Amoeba-

based shared cache can effectively enable the shared cache to support

more cores and increase overall throughput. We leave the design

space exploration of an Amoeba-based coherent cache for future

work.

Table 7: Multiprogrammed Workloads on 1M Shared Amoeba-

Cache%̇ reduction in miss rate and bandwidth. Baseline:

Fixed 1M.

Miss Miss Miss Miss BW
Mix T1 T2 T3 T4 (All)

jbb×2, tpc-c×2 12.38% 12.38% 22.29% 22.37% 39.07%
firefox×2, x264×2 3.82% 3.61% –2.44% 0.43% 15.71%

cactus, fluid., omnet., sopl. 1.01% 1.86% 22.38% 0.59% 18.62%
canneal, astar, ferret, milc 4.85% 2.75% 19.39% –4.07% 17.77%
–: indicates Miss or BW higher than Fixed. T1—T4, threads in the mix;
in the order of applications in the mix

11 Related Work

Burger et al. [5] defined cache efficiency as the fraction of blocks

that store data that is likely to be used. We use the term cache

utilization to identify touched versus untouched words residing in the

cache. Past works [6,29,30] have also observed low cache utilization

at specific levels of the cache. Some works [18, 19, 13, 21] have

sought to improve cache utilization by eliminating cache blocks that

are no longer likely to be used (referred to as dead blocks). These

techniques do not address the problem of intra-block waste (i.e.,

untouched words).

Sector caches [31, 32] associate a single tag with a group of con-

tiguous cache lines, allowing cache sizes to grow without paying

the penalty of additional tag overhead. Sector caches use bandwidth

efficiently by transferring only the needed cache lines within a sector.

Conventional sector caches [31] may result in worse utilization due to

the space occupied by invalid cache lines within a sector. Decoupled

sector caches [32] help reduce the number of invalid cache lines per

sector by increasing the number of tags per sector. Compared to the

Amoeba cache, the tag space is a constant overhead, and limits the #

of invalid sectors that can be eliminated. Pujara et al. [29] consider a

word granularity sector cache, and use a predictor to try and bring in

only the used words. Our results (see Figure 14) show that smaller

granularity sectors significantly increase misses, and optimizations

that prefetch [29] can pollute the cache and interconnect with unused

words.

Line distillation [30] applies filtering at the word granularity to

eliminate unused words in a cache block at eviction. This approach

requires part of the cache to be organized as a word-organized cache,

which increases tag overhead, complicates lookup, and bounds per-

formance improvements. Most importantly, line distillation does not

address the bandwidth penalty of unused words. This inefficiency

is increasingly important to address under current and future tech-

nology dominated by interconnects [14,28]. Veidenbaum et al. [33]

propose that the entire cache be word organized and propose an

online algorithm to prefetch words. Unfortunately, a static word-

organized cache has a built-in tag overhead of 50% and requires

energy-intensive associative searches.

Amoeba-Cache adopts a more proactive approach that enables con-

tinuous dynamic block granularity adaptation to the available spatial

locality. When there is high spatial locality, the Amoeba-Cache will

automatically store a few big cache blocks (most space dedicated

for data); with low spatial locality, it will adapt to storing many

small cache blocks (extra space allocated for tags). Recently, Yoon et
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al. have proposed an adaptive granularity DRAM architecture [35].

This provides the support necessary for supporting variable granu-

larity off-chip requests from an Amoeba-Cache-based LLC. Some

research [10,8] has also focused on reducing false sharing in coherent

caches by splitting/merging cache blocks to avoid invalidations. They

would benefit from the Amoeba-Cache design, which manages block

granularity in hardware.

There has a been a significant amount of work at the compiler

and software runtime level (e.g. [7]) to restructure data for improved

spatial efficiency. There have also been efforts from the architecture

community to predict spatial locality [29, 34, 17, 36], which we can

leverage to predict Amoeba-Block ranges. Finally, cache compression

is an orthogonal body of work that does not eliminate unused words

but seeks to minimize the overall memory footprint [1].

12 Summary

In this paper, we propose a cache design, Amoeba-Cache, that

can dynamically hold a variable number of cache blocks of different

granularities. The Amoeba-Cache employs a novel organization that

completely eliminates the tag array and collocates the tags with the

cache block in the data array. This permits the Amoeba-Cache to trade

the space budgeted for the cache blocks for tags and support a variable

number of tags (and blocks). For applications that have low spatial

locality, Amoeba-Cache can reduce cache pollution, improve the

overall miss rate, and reduce bandwidth wasted in the interconnects.

When applications have moderate to high spatial locality, Amoeba-

Cache coarsens the block size and ensures good performance. Finally,

for applications that are streaming (e.g., lbm), Amoeba-Cache can

save significant energy by eliminating unused words from being

transmitted over the interconnects.
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Appendix

Table 8: Amoeba-Cache Performance. Absolute #s.

MPKI BW bytes/1K CPI Predictor Stats

L1 L2 L1←→L2 L2←→Mem First Touch Evict Win.
MPKI MPKI #Bytes/1K #Bytes/1K Cycles/Ins. % Misses # ins./Evict

apache 64.9 19.6 5,000 2,067 8.3 0.4 17
art 133.7 53.0 5,475 1,425 16.0 0.0 9

astar 0.9 0.3 70 35 1.9 18.0 1,600
cactus 6.9 4.4 604 456 3.5 7.5 162
canne. 8.3 5.0 486 357 3.2 5.8 128
eclip. 3.6 <0.1 433 <1 1.8 0.1 198
faces. 5.5 4.7 683 632 3.0 41.2 190
ferre. 6.8 1.4 827 83 2.1 1.3 156
firef. 1.5 1.0 123 95 2.1 11.1 727
fluid. 1.7 1.4 138 127 1.9 39.2 629

freqm. 1.1 0.6 89 65 2.3 17.7 994
h2 4.6 0.4 328 46 1.8 1.7 154
jbb 24.6 9.6 1,542 830 5.0 10.2 42
lbm 63.1 42.2 3,755 3,438 13.6 6.7 18
mcf 55.8 40.7 2,519 2,073 13.2 0.0 19
milc 16.1 16.0 1,486 1,476 6.0 2.4 66

omnet. 2.5 <0.1 158 <1 1.9 0.0 458
sople. 30.7 4.0 1,045 292 3.1 0.9 35
tpcc 5.4 0.5 438 36 2.0 0.4 200

trade. 3.6 <0.1 410 6 1.8 0.6 194
twolf 23.3 0.6 1,326 45 2.2 0.0 49
x264 4.1 1.8 270 190 2.2 12.4 274
MPKI : Misses / 1K instructions. BW: # words / 1K instructions
CPI: Clock cycles per instruction.
Predictor First touch: Compulsory misses. % of accesses that use default granularity.
Evict window: # of instructions between evictions. Higher value indicates
predictor training takes longer.
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