
Propeller: A Profile Guided, Relinking Optimizer for
Warehouse-Scale Applications

Han Shen∗
Google
USA

shenhan@google.com

Krzysztof Pszeniczny∗
Google

Switzerland
kpszeniczny@google.com

Rahman Lavaee∗
Google
USA

rahmanl@google.com

Snehasish Kumar∗
Google
USA

sneaky@google.com

Sriraman Tallam∗

Google
USA

tmsriram@google.com

Xinliang David Li∗
Google
USA

davidxl@google.com

ABSTRACT
While profile guided optimizations (PGO) and link time optimiza-
tions (LTO) have beenwidely adopted, post link optimizations (PLO)
have languished until recently when researchers demonstrated that
late injection of profiles can yield significant performance improve-
ments.However, the disassembly-driven, monolithic design of post
link optimizers face scaling challenges with large binaries and is at
odds with distributed build systems. To reconcile and enable post
link optimizations within a distributed build environment, we pro-
pose Propeller, a relinking optimizer for warehouse scale workloads.
To enable flexible code layout optimizations, we introduce basic
block sections, a novel linker abstraction. Propeller uses basic block
sections to enable a new approach to PLO without disassembly.
Propeller achieves scalability by relinking the binary using precise
profiles instead of rewriting the binary. The overhead of relinking
is lowered by caching and leveraging distributed compiler actions
during code generation.

Propeller has been deployed to production at Google with over
tens of millions of cores executing Propeller optimized code at
any time. An evaluation of internal warehouse-scale applications
show Propeller improves performance by 1.1% to 8% beyond PGO
and ThinLTO. Compiler tools such as Clang improve by 7% while
MySQL improves by 1%. Compared to the state of the art binary op-
timizer, Propeller achieves comparable performance while lowering
memory overheads by 30%-70% on large benchmarks.

CCS CONCEPTS
• Software and its engineering→ Retargetable compilers.

KEYWORDS
Profile Guided Optimization, Post-Link Optimization, Binary Opti-
mization, Warehouse-Scale Applications, Distributed Build System,
Datacenters
∗In alphabetical order of first name.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575727

ACM Reference Format:
Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sri-
raman Tallam, and Xinliang David Li. 2023. Propeller: A Profile Guided,
Relinking Optimizer for Warehouse-Scale Applications. In Proceedings of
the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (ASPLOS ’23), March
25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3575693.3575727

1 INTRODUCTION
Due to the large computational footprint of warehouse scale ap-
plications, any improvement in application performance has an
outsized impact [9, 32, 38]. When precise profiles are injected late
in compilation [51], performance can be improved even beyond
existing technologies such as profile guided optimizations and link
time optimizations. However, we find that the monolithic design
of binary optimizers is ill-suited for use with distributed build sys-
tems. With Propeller we introduce a new paradigm for post link
binary optimizations, enabling their use with distributed builds
while reducing overheads and improving coverage.

1.1 Why Do We Need a New Paradigm?
The design of disassembly driven binary optimizers is at odds with
the characteristics of warehouse scale applications. To maximize
performance, applications are built with all optimizations and li-
braries are linked statically. They also use link time cross-module op-
timizations and hot code sequences are tuned with hand-written as-
sembly. Unfortunately, the performance of disassemblers degrades
with increasing complexity [7]. The most recent iteration of BOLT,
Lightning BOLT [52] parallelizes key aspects of the binary opti-
mizer, however, it is still limited to a single machine. Sequential
processing is necessary during function discovery, disassembly,
global optimizations and finally emit-and-link. These stages ac-
count for more than half of the total BOLT runtime. Furthermore
since disassembly is an inexact science for CISC architectures, the
results may be unreliable. This may lead to failures during opti-
mization or worse, application run time crashes.

Similar scalability problems are encountered with link time opti-
mizations in GCC and LLVM. The traditional, monolithic approach
attempts to link all the intermediate language files together and
optimize them as a single translation unit. However, this method

617

https://doi.org/10.1145/3575693.3575727
https://doi.org/10.1145/3575693.3575727
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575727&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

consumes a disproportionately large amount of memory and in-
creases runtime. To reduce overheads, LLVM1 offers a multi-stage
LTO implementation called ThinLTO [37] with

(1) Per-module, distributed summary generation.
(2) Fast, serial whole program summary based analyses.
(3) Per-module, distributed function importing and middle-end

optimizations.
This allows the overheads to be reduced by taking advantage of the
insight that only a small number of functions across modules are
relevant in a particular context. Furthermore, this allows distributed
build systems to leverage multi-process parallelism for all stages
apart from (2). Thus, inspired by the approach adopted to scale LTO
to distributed build systems, we propose a new paradigm for binary
optimizations with the Propeller framework.

1.2 Our Contributions
To bring further performance improvements to warehouse scale
PGO-optimized binaries, we present Propeller, a profile guided
relinking optimizer which leverages distributed build systems. Pro-
peller has been deployed to production at Google with over tens of
millions of cores executing Propeller optimized code at any time. The
contributions we make in this work are:

• The design of a profile guided, relinking optimizer for ware-
house scale workloads, a new paradigm for post link opti-
mizations.

• Demonstrate how post link optimizations can leverage the
power of distributed build systemswhile adhering to running
time and memory constraints.

• Basic block sections, a novel linker abstraction which enables
flexible and fine grained code layout optimizations.

• An exhaustive evaluation of the impact of profile guided
relinking on commercial and open-source workloads.

2 BACKGROUND
Homogeneity in hardware, software and control systems allow a
datacenter to be treated as a warehouse scale computer (WSC), a
new class of computing infrastructure[10, 38]. WSCs often run a
small number of very large internet scale applications belonging to a
single organization. Warehouse scale applications require the use of
warehouse scale tooling to build, test and deploy. In this section, we
introduce distributed build systems, profile guided optimizations,
link time optimizations, post link optimization and their use in
internet scale applications.

2.1 Distributed Build Systems
As the complexity of software increases, companies such as Google
and Microsoft have adopted a monorepo (monolithic repository)
approach to maintaining their source code [53, 68]. A monorepo ap-
proach has the advantages of simplified dependency management,
versioning, and atomic changes, thus fostering collaboration. As
the codebase grows, dependencies are shared widely across teams.
The build action dependency growth rate is quadratic, i.e. increase
in submit rate (more engineers) and increase in test pool size (more

1GCC offers scalable LTO [12] too, however, it has not been adapted for use with
distributed build systems.

functionality). To help cope with this increased build/test work-
load when developing in monorepos, distributed build systems are
commonly used. In contrast to local build systems, a distributed
build executes actions on network connected, remote machines. It
is beneficial when the number of actions required to build a target
is orders of magnitude larger than the processing capability of any
individual system.

Distributed Build Systems are Essential for Developer Productivity:
A 2020 study at Google [67] shared that over 15M actions were
executed daily. More than 100K changes are submitted every day
by 50K+ developers towards a codebase of over 3 billion lines of
code [67]. Over a 5 year period, daily build actions have increased
3×, changes submitted by 2× [30, 67]. The only way to tame this is
massive parallelism enabled by a distributed build system. Coupled
with aggressive content based caching with a hit rate >90%, most
developers spend less than 10s waiting for plain builds to complete.
To ensure predictable resource consumption growth all actions
are provided with a small (fixed) number of CPU cores and 12
GB of RAM. Microsoft CloudBuild[24], IBM ClearMake[33] are
additional examples of distributed build systems used in production.
Apart from bespoke solutions, distcc and ccache are often used to
accelerate builds [40, 61] via distributed execution and caching
respectively.

2.2 Profile Guided Optimizations (PGO)
Profile guided compiler optimizations are effective in further im-
proving performance of applications when trained with appropriate
inputs. PGO in compilers like LLVM and GCC includes profiling of
branch weights and indirect call targets among other profile types.
The information collected during the training phase is used to aug-
ment heuristics driving function inlining, function/block layout,
register allocation among other passes.

PGO employs a two stage build where the first step is to build an
instrumented binary. This binary is executed using a set of inputs
suitable for training, and profile data is collected from this run.
The second build step compiles the binary again with the profile
collected from the first run. Due to the high overheads incurred
by instrumentation, load tests mimicking production scenarios are
used to collect profiles. A newer technique, AutoFDO [17], uses
hardware performance counters to collect profiles from workloads
serving production traffic with low overhead. Both techniques are
widely used in the industry and performance improvements of 5%
are observed on SPEC2006 benchmarks [17]. However, as compila-
tion progresses through the optimization pipeline, code transforma-
tions can cause a mismatch between the profile data and the code
being optimized, reducing the applicability and effectiveness of the
profile data. This creates opportunities for further performance
improvement which can be addressed by post-link optimizers.

2.3 Link Time Optimizations (LTO)
Previously, the phrase "Link Time Optimization" (LTO) has been
used to describe disassembly driven, whole program optimizations
which are micro-architecture specific [22, 46, 58]. More recently,
compilers have redefined this to refer to "a compilation mode in
which an intermediate language (an IL) is written to the object files

618

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and the optimizer is invoked during the linking stage" [28]. Oper-
ating on the intermediate representation rather than relying on
disassembly enables reuse of the existing optimization pipeline and
avoids the caveats of disassembly driven reconstruction. Both GCC
and LLVM offer link time optimization capabilities as standard. The
intermediate representation is read into the compiler at link time
treating the whole program as a single source level compilation
unit. More scalable forms of LTO use summary based analyses to
reduce runtime and memory overheads (see §1.1). LLVM based LTO
improved performance of SPEC2006 benchmarks on average by
2%-4% [37].

2.4 Post Link Optimizations (PLO)
Post link optimizers (or static binary optimizers) operate directly on
the executable file [22, 44, 46, 47, 51, 58]. The binary is disassem-
bled and analyses are performed on the reconstructed control flow
graph. Optimizations are introduced by rewriting the executable as
opposed to dynamic binary optimizers [14, 15, 66] which modify
the code in memory at runtime. Some of the optimizations per-
formed are code layout, data compaction, alignment, and peephole
optimizations such as conditional branch reversal. PLO may be
guided by profile data collected via instrumentation [46, 47, 58] or
hardware performance counters [44, 51]. Binary optimizers have
advantages such as the ability to operate without source code, en-
abling tailored optimizations for proprietary libraries. Like LTO,
they have a global view of the program enabling more optimiza-
tions. However, they are limited by challenges in disassembly such
as data embedded in code. Disassembly driven optimizers require
heavy weight pre-processing prior to analyses increasing mem-
ory overhead. The stability and performance of binary optimizers
degrade with increasing complexity of the executable, i.e. higher
optimization levels, presence of hand-tuned assembly and the use
of static linking [7].

PLO mitigates profile quality loss: As retargetable compilers such
as GCC and LLVM matured, their architecture-specific code gener-
ation improved. Scalable whole program analysis is now a common
feature in both compilers. Finally, profile information was incorpo-
rated early in the optimization pipeline. It seemed that the value of
binary optimizers for performance had been wholly subsumed by
the compiler.

Recently, BOLT[51] demonstrated that injecting hardware pro-
files with a binary optimizer can significantly improve code layout.
BOLT showed that profiles applied to the compile, link or post link
are complementary to each other. Post link profiles fix inaccura-
cies accrued by instrumented profiles as optimizations transform
the source. This novel insight has expanded the scope of PLO be-
yond whole program and architecture specific optimizations. Our
experiments show that identifying cold blocks using hardware
sample profiles collected from an PGO optimized binary is more
effective than directly identifying cold blocks in the PGO profile.
Performance improves by an additional 1% when function split-
ting (see §4.6) is driven with the former on a clang benchmark.
BOLT demonstrated the effectiveness of PLO on large Facebook
workloads, improving performance by 2-7% [51]. With these en-
couraging results, binary optimizers have new-found relevance for
those seeking peak performance.

3 DESIGN OF A PROFILE GUIDED,
RELINKING OPTIMIZER

The design of Propeller is driven by the need for scalable and sound
post-link optimization (PLO). The key barrier to scalability and
soundness is the disassembly oriented approach of existing PLO
toolchains. Disassembly is one of the primary serializing bottle-
necks in state of the art PLO tools [52]. Accurate recursive dis-
assembly [7] of complex applications is challenging to distribute
across many machines due to the incremental nature of discovery.
The design of Propeller is guided by the following insights of the
distributed build system used in production at Google.

1. Extensive caching is available: Build environments cache in-
termediate build artifacts to reduce computation at the expense of
cheap, fast storage. Artifacts such as optimized LLVM IR (interme-
diate representation) and native object files are readily available
for reprocessing. Reprocessing a small, targeted fraction of cached
artifacts does not add significant overhead.

2. Monolithic, heavy-weight actions are discouraged: Warehouse
scale applications depend on thousands of source files. Distributed
build actions often operate on a single module at a time. Cross mod-
ule optimizations are supported via summary based analyses, e.g.
ThinLTO. The key non-distributed action with the largest memory
footprint is the final native link of the object files.

From these insights we derive the cornerstone of Propeller’s
design, relinking, which obviates the need for disassembly. Relink-
ing makes it possible to distribute the optimization of the individual
modules across machines. This keeps the resource usage of relink-
ing actions equivalent to compiler actions and allows Propeller to
scale to warehouse scale applications. We note that BOLT [51] has
proposed MCPlus serialization [4, 50] as future work to support
caching and relinking as an alternative to disassembly. This fur-
ther reinforces the advantage of a design which eschews the use of
disassembly.

Figure 1 illustrates the Propeller end-to-end workflow while
Table 1 lists each component and its tool or framework. Each phase
is described in order, in the subsections that follow.

Table 1: Propeller Components

Component Tool / Framework
Optimized IR cache Distributed build system [67]
BB address map LLVM Backend [27]
Hardware profiles Linux perf [39]
Whole Program Analysis Standalone tool [29]
Local code layout LLVM Backend [25]
Object file cache Distributed build system [67]
Global code layout LLD [64]

3.1 Phase 1 - Compile and Cache Optimized
LLVM IR

In Phase 1 of the workflow, individual program modules are com-
piled to optimized LLVM IR modules. The optimized IR is cached
for reuse by the distributed build system used in production. At

619

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

Obj Cache
IR Cache

s_1.cc

s_n.cc

...

s_1.ir

s_n.ir

Phase 1
Compile and Cache

Backend

a.out
bb map

Phase 2
Build with metadata

Whole Program
Analyser

Hardware
Profile

cc_prof.txt

ld_prof.txt

Phase 4
Relink

Phase 3
Profile and WPA

...

cold.o
bb mapcold.cc

...

cold.ir
...

Hot cached IR objects

s_n.o
bb map

s_1.o
bb map

Backend

Backend

Li
nk

er

IR Cache

s_1.ir

s_n.ir

Backend
...

Backend a.out

cold.o
bb map

s_n.o

s_1.o

Li
nk

er

 Obj Cache

Cold cached native objects

Figure 1: Design of a Profile Guided, Relinking Optimizer

this stage, all optimizations are enabled for each module including
profile guided optimizations such as instrumented PGO or Aut-
oFDO [17]. In the later phases, Propeller optimizes and relinks
these cached artifacts, avoiding disassembly. The memory and time
overheads to relink and build the final Propeller optimized binary
is lower than building a vanilla optimized binary. This is due to the
reuse of cached build artifacts from the prior phases. The backend
actions that optimize and convert the cached IR to native object
files are distributed and the memory requirements of relinking are
within the thresholds enforced by the distributed build system. For
a distributed build environment that includes ThinLTO [37], this
step does not introduce any additional storage or compute require-
ments. However, note that Propeller is complementary to ThinLTO
and can be applied independently too.

3.2 Phase 2 - Build Optimized Binary with
Profile Mapping Metadata

In Phase 2, after cross module optimizations and codegen oper-
ations the compiler backend generates mapping metadata. The
metadata enables the association of hardware profiles containing
virtual addresses to machine basic blocks. The Basic Block Ad-
dress Map [27], i.e profile to basic block mapping metadata is
generated for each function and stored in a separate ELF section
(see Table 1). The offset of each machine basic block from the be-
ginning of a function is stored along with an identifier. Additional
block characteristics may also be stored such as next fall-through
basic block to aid whole program analysis in Phase 3. Application
performance is unaffected since this ELF section is not loaded into
memory. Experimental results show that the binary size is increased
by 7% to 9% for the benchmarks we study in § 5. Cold object files
which do not undergo profile driven transformations are reused
from the cache in Phase 4.

3.3 Phase 3 - Profile Collection and Whole
Program Analysis (WPA)

While the workload is executing representative load, sampled hard-
ware profiles are collected using the Linux perf tool. We collect
Last Branch Records (LBR) [39] from Intel machines which con-
tain the source and destination address pairs of the last 32 retired
jump instructions. The Basic Block Address Map is used to map
the samples to machine IR [5] basic blocks. A dynamic control flow
graph (DCFG) is created for every function encountered in the LBR
samples. The graph is built incrementally, defining edges as samples
are processed. Reconstructing the control flow does not require
disassembly. Each basic block is annotated with metadata from
the Basic Block Address Map (§ 3.2) and profile counts from the
sample data. We use the Ext-TSP algorithm proposed by Newell and
Pupyrev [49] to approximate the optimal basic block reordering.
The outputs of the computation are code layout directives to the
compiler and linker. Fig 1 shows the outputs named cc_prof.txt and
ld_prof.txt and their use in Phase 4. The whole program analysis has
been released as a standalone tool [29] (see Table 1). The memory
consumption of this step is directly proportional to the cumulative
size of the DCFGs. The peak heap memory used is at most 2.5GB for
the warehouse scale applications, each containing 90MB to 600MB
of code (see Fig. 4 and Table 2).

3.4 Phase 4 - Relinking to Yield a Propeller
Optimized Binary

The number of cold functions outnumber hot functions, ergo in
practice, most object files contain only cold code. For these, no
samples were observed during profiling in Phase 2 (see § 3.2). Cold
object files (see cold.o in Fig. 1) are retrieved from the distributed
build system [67] cache and passed to the final relink action. For
object files containing hot code, we rerun the LLVM backend code
generator with the desired block layout specified in cc_prof.txt (see
Table 1). Propeller updates the basic block layout of ≃10% of object
files on average for our workloads. The largest fraction of hot object

620

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

files, i.e., those with at least one hot function, was observed in the
clang benchmark (33%).

For code layout optimizations evaluated in this work, the back-
end generates multiple basic block clusters for each hot function.
The hot basic blocks form the primary cluster, whereas cold blocks
(if any) are placed in a separate cluster. For inter-procedural basic
block layout, additional clusters are generated as described in sec-
tion 4.7. As described in § 4, each cluster is placed in a separate
section and assigned a symbol. The primary cluster retains the
symbol of the parent function, while the cold cluster gains a suffix -
.cold. Any additional clusters generated for inter-procedural layout
(when profitable) are named by appending a numeric identifier
to the original symbol. Barring object size overheads, the design
allows for an arbitrary number of basic block cluster sections per
function. The final relink action is invoked with the desired global
layout in ld_prof.txt (see Fig. 1). The running time of Phase 4 is
minimized by reusing the cached LLVM IR from Phase 1, distributed
invocation of codegen backends, and reusing the cached object files
from Phase 2 (see Fig. 1).

In this phase, the hot LLVM IR objects are retrieved from the
cache for code layout optimizations. The cold native objects are
reused from Phase 2. The linker arranges the layout of all basic
block sections in the final binary based on the symbol ordering
specified. Any address map metadata sections in the cold native
objects are dropped by the linker.

3.5 Design of Propeller Optimizations
The Propeller workflow illustrated in Figure 1 is designed to take
advantage of distributed build systems. This design is inspired by
ThinLTO [37] where the thin link step is kept lightweight and uses
summaries to guide subsequent compiler optimizations. This model
requires that an optimization be split into two parts. The first part
is done in a distributed fashion independently on each IR object.
The second part is done as a whole-program transformation on the
entire binary in the relink phase. With code layout optimizations
presented in this work, the former is the intra-function layout,
performed independently on each function. The global layout of
basic block clusters is done at link time by leveraging the section
ordering feature in the linker.

Additionally, optimizations must be designed to keep memory
consumption low. This is due to distributed build systems enforcing
limits on how much CPU and RAM each action may consume (see
§ 2.1 for rationale). In this work, the parts that consume the most
memory are the whole program analysis in Phase 2 and the final
relink action in Phase 4. The memory usage of whole program
analyses can exceed the limits if fine-grained information about
the program is retained. Therefore, we keep minimal control flow
information required to perform code layout (see Phase 2 in Fig. 1);
no instructions are disassembled. The final relink step is also mem-
ory intensive as it consumes all the object files and writes out the
final binary.

Profile guided, post link software prefetch insertion [45] is an-
other optimization that can be implemented in Propeller. The whole-
program analysis of cachemiss profiles determine prefetch insertion
points. A summary-based directive can then drive the distributed

code generation actions that modify the objects and insert prefetch
instructions.

4 BASIC BLOCK SECTIONS
Propeller code layout optimizations are enabled by a novel linker
abstraction. A section is a contiguous range of bytes containing ei-
ther code, data, debug info, relocations, or metadata that the linker
operates on as a single unit. Compilers such as gcc and clang fea-
ture function sections, an abstraction which allows the linker to
deduplicate code and perform coarse-grained code layout. We in-
troduce Basic Block Sections, a new abstraction where one or more
basic blocks of a single function are placed in a unique text section
in the object file. Basic block sections enable fine granularity code
layout decisions without disassembly and binary rewriting. While
we implemented our approach for the ELF format [2], the idea can
be generalized to PE, COFF [1] and Mach-O [3] executable formats.
Symbols are generated to refer to each basic block section allow-
ing tools to manipulate the ordering at a finer granularity than
previously possible in the executable. The ordering is performed
via a symbol ordering file, a concept supported by modern link-
ers [63, 64]. Ordering basic block sections enables optimizations
such as inter-procedural block layout, global function layout and
function splitting. The following section outlines the challenges to
be addressed and discusses the aforementioned use cases.

4.1 Object File Metadata
Each additional section added to an object file increases its size by
tens of bytes. The number of basic blocks can be much larger than
the number of functions. For instance, the clang binary contains
2.1𝑀 basic blocks from approximately 160𝐾 functions. Enabling
sections for each block can increase object sizes significantly. Fur-
thermore the peak memory usage of the final relink action (see
Fig 1) is increased. Propeller creates basic block sections only where
necessary by computing block layout in Phase 3 (§ 3.3). This allows
the compiler backends in Phase 4 (§ 3.4) to create sections with
clusters of basic blocks. Mapping multiple blocks from the same
function to a single cluster keeps overheads low.

4.2 Branch Relocations and Explicit
Fall-Through

To improve performance, one side of a branch terminating a basic
block is retained as an implicit fall-through. To allow the linker
to reorder basic blocks, the compiler must retain the direct jump
instruction to the next basic block. This makes the fall-through
explicit while retaining flexibility. Static relocations are added for
each branch whose address needs to be updated since resolution
of branch targets is deferred to the linker. The compiler uses short
branch instructions on some ISAs[8] for branch offsets that can be
accommodated in one byte. With basic block sections, since long
branch instructions are used, the offset is not determined at com-
pile time. After code layout has been performed, a bespoke linker
relaxation pass[62] removes fall-through branches. Additionally
it shrinks branch instructions where the offset can be encoded in
fewer bytes.

621

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

4.3 Debug Information
Preserving debug information across code layout optimizations is
necessary to ensure ease of debugging. The potential discontiguous
layout of basic blocks requires debug information to be generated
per cluster. The DWARF standard allows for the generation of
address range based descriptors using theDW_AT_ranges tag which
can be discontiguous yet refer to the same entity. Additionally,
two relocations point to symbols at the start and end of the basic
block cluster. The overhead incurred is directly proportional to the
number of basic block cluster sections generated. Thus basic block
clusters (see § 4.1) are essential to keep final binary overheads low.

4.4 Call Frame Information (CFI)
Call frame information directives allow precise unwinding in the
presence of optimizations where the function prologue may not be
easily recognizable. Unlike the DWARF debug information, CFI does
not account for the non-contiguous range of addresses occupied by a
function. The DWARF standard explicitly requires emitting separate
CFI Frame Descriptor Entries for each contiguous fragment of a
function. The CFI for all callee-saved registers (possibly including
the frame pointer) have to be emitted along with redefining the
Call Frame Address (CFA), viz. where the current frame starts.
Each additional basic block section increases the overhead of the
.eh_frame section (ELF binaries). Clustering multiple basic blocks
from the same function in a single section amortizes the overhead.

4.5 Exception Handling
Exceptions [34] are handled with basic block sections by splitting
the call-site table into various ranges corresponding to the sections
created. The call-site table explicitly specifies the landing pad start
(@LPStart), as this is not necessarily the start of the function. The ex-
ception landing pads are kept together in a single section, although
they may be combined with non-landing pad blocks. Further, the
C++ ABI requires that landing pads have non-zero offsets relative
to@LPStart to avoid ambiguity with the no-landing-pad case. Thus,
if the landing pad section begins with a landing pad block, we insert
a nop at the start of the landing pad section.

BB_1: # call cold fn
 leaq 12(%rsp), %rsi
 movl %ebx, %edi
 callq foo.cold.1
 movl 12(%rsp), %ebx
 jmp BB_2

BB_1: # cold
 callq R1
 incl %ebx
 jmp BB_2

foo:
 ...
 jne BB_1

BB_2:
 ...
 ret

foo:
 ...
 jne BB_1

BB_2:
 ...
 ret

foo.cold.1:
 callq R1
 …
 ret

BB_1: # cold
 callq R1
 incl %ebx
 jmp BB_2

foo:
 ...
 jne BB_1

BB_2:
 ...
 ret

.te
xt

.h
ot

.te
xt

.c
ol

d

Figure 2: Original function layout (L), Splitting via
function call (C), Splitting with basic block sections (R)

4.6 Use Case: Low Overhead Function Splitting
A study of warehouse scale workloads at Google showed that in
half of the hottest functions, more the 50% of the code bytes are
untouched [9]. Function splitting is an optimization where the
cold basic blocks of a function are extracted to a separate region.
This improves the locality of iTLB and icaches reducing frontend
pipeline stalls. An implementation of this optimization in LLVM
uses a heuristic to evaluate potential gain from splitting. A heuristic
is necessary since the extraction mechanism uses a function call to
jump to the cold blocks, incurring overhead in layout and possibly
during runtime (see Fig. 2). With basic block sections, the func-
tion body can be discontiguous without code overhead introduced
during extraction thus eliminating the need for a heuristic. Our
experiments show that this approach is ≃2X [41] more effective
than prior work in LLVM. Compared to a baseline optimized with
PGO and ThinLTO, we observe up to 40% reduction in iTLB misses
and 5% reduction in icache misses. Using an additional round of
hardware profiling in the Propeller framework further improves
performance by 1% for the clang benchmark.

4.7 Use Case: Inter-Procedural Code Layout
Basic block sections allow us to split and reorder functions across
the whole program beyond hot-cold splitting. In particular, a func-
tion may be split into multiple sections placed apart in the binary.
This improves performance for large, multi-modal functions which
exhibit different behaviors within different calling contexts. For
instance, consider Figure 3, illustrating the control flow between
three functions. Function foo branches into either of its two loops.
Each loop calls a different function that is not inlined. Placing the
loop bodies close to their callees improves spatial locality, thereby
reducing the icache and iTLB misses. As shown in Figure 3, an
optimal intra-function layout keeps both callees close to foo, but
cannot place them near their callsites. In contrast, an inter-function
layout can split the layout of the two loops and place both callees
near their callsites. This improves the overall spatial locality since
the calls from the loops are much hotter than the edges outside the
loops.

foo entry
code

foo loop 1

bar

baz

foo loop 2

foo entry
code

foo loop 1

bar

baz

foo loop 2

Figure 3: Optimal intra-function (L) and inter-function (R)
layout. Hotter edges are shown by thicker lines.

To compute the optimal inter-procedural layout, we apply the
Ext-TSP algorithm [49] on the whole program control flow graph
(CFG). This graph includes edges for inter-procedure calls. The

622

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

unmodified algorithm does not scale with the size of whole pro-
gram CFGs constructed for warehouse scale applications. We im-
plemented several improvements such as logarithmic time retrieval
of the most profitable action. Even with such improvements, gener-
ating the optimal inter-function layout takes 3× to 10× longer than
intra-function layout.

Inter-function layout improves the performance of clang by
0.8% in comparison to the intra-function layout. For clang, the
icache and iTLB miss rates reduce by 11% and 13%, respectively.
Although promising on some applications, optimal inter-function
layout requires a more extensive study which we leave for future
work. In the evaluation of this work, we focus on intra-function
layout enabled by basic block sections.

5 EVALUATION
The design of Propeller is focused on scalability, see § 1.1 for moti-
vation. Thus we evaluate Propeller optimizations with an emphasis
on meeting the limits imposed by the distributed build system at
Google. We contrast Propeller’s relinking approach to the most
recent iteration of BOLT, Lightning BOLT [52]. When measuring
memory usage of BOLT optimizations, we use the options that yield
the fastest runtime. For workload performance, we present results
where all BOLT optimization passes are enabled. We demonstrate
the efficacy of Propeller optimized benchmarks, both in standalone
benchmarks and using data gathered from a production environ-
ment. To put these numbers into perspective, we present the cost (in
time) to release processes which integrate Propeller optimizations.
Finally, we discuss the challenges we encountered while evaluating
BOLT on warehouse-scale applications.

Benchmarks: We have evaluated Propeller on 4 warehouse-scale
applications, 8 benchmarks from SPEC2017 integer benchmarks and
2 open source workloads, MySQL and Clang. All the benchmarks
are built for x86-ELF on Linux. Table 2 details characteristics of
benchmarks relevant to this work. The following metrics provide
insight into the complexity of the benchmark - size of the text
section (Text), number of functions (Funcs) and the total number
of basic blocks (BBs). Optimization run time and memory usage
are directly proportional to these characteristics. The fraction of
cold objects (% Cold) allow us to reason about the effectiveness of
caching. The characteristics of each benchmark in Table 2 is drawn
from the baseline binary.

Table 2: Benchmark Characteristics

Benchmark Text #Funcs #BBs % Cold
Clang 72 MB 160 K 2.1 M 67%
MySQL 26 MB 61 K 1.4 M 93%
Spanner [20] 175 MB 562 K 7.8 M 83%
Search 413 MB 1.7 M 18 M 95%
Bigtable [16] 93 MB 368 K 4.2 M 88%
Superroot [70] 598 MB 2.7 M 30 M 82%
SPEC 2017 34 KB - 4 MB 80-12 K 1-107 K 21%-88%

Methodology. In all evaluations, the baseline binary is built with
instrumented PGO profiles and ThinLTO optimizations are enabled.

Hardware sample profiles are collected from the PGO optimized
binary. To ensure fairness, we use the same set of hardware profiles
to drive both Propeller and Lightning BOLT. We have used a recent
version of trunk LLVM BOLT2. For evaluations where memory
usage and optimization run time are reported (§ 5.1, 5.2 and 5.7),
BOLT was used with the following options:

-reorder-blocks=cache+ -reorder-functions=hfsort
-split-functions=3 -split-all-cold -split-eh

These options were recommended in Lightning Bolt [52] to reduce
the peak memory usage and runtime of BOLT optimizations. For
evaluations where performance was measured with BOLT (§ 5.4),
we add -lite=0 to enable heavy weight optimizations. This ensures
that we report the best performance obtained by BOLT optimized
binaries.

The Clang,MySQL and SPEC2017 benchmarks, were built on a de-
veloper workstations with 72 cores and 192GB of RAM. The profile
conversion and whole program analysis step (perf2bolt and Phase
3) were performed on the workstation to minimize differences in
evaluation. BOLT optimized binaries were built on the workstation,
allowing use of concurrent processing detailed in [52]. Memory
usage for BOLT optimizations are unconstrained. The warehouse-
scale benchmarks and their Propeller optimized versions were built
on a distributed build system [67]. Each distributed action is limited
to 12GB of RAM (24GB for Superroot) and ≃1 core on a remote ma-
chine. Peak memory usage for evaluations is obtained by measuring
the max resident set size.

5.1 Peak Memory Usage of Phase 3: Profile
Conversion and Whole Program Analysis

Propeller consumes less than 3GB across all workloads, within limits
imposed by the build system and scales well for warehouse-scale appli-
cations. Prior to performing any optimizations the perf data profiles
must be consumed to create data structures such as the whole pro-
gram control flow graph (see § 3.3). For BOLT the analogous step
is performed by perf2bolt where the binary is disassembled and
the profile is converted to a custom format. Figure 4(L) shows the
peak memory usage incurred by Propeller (Phase 3) and BOLT
profile conversion. The profile conversion step is a single process
that is not distributed. It is important that its peak memory usage
be within the limits imposed by the distributed build system. The
same hardware sample profiles are used for both BOLT and Pro-
peller. The sizes of the profiles range from 100 MB to 700 MB (may
be multiple for each benchmark). For the largest binary Superroot
(see Table 2 for details) Propeller peak memory usage is 2.6GB. For
Propeller, the peak memory usage is attributed to the maximum
of reading profiles and the in-memory DCFG (see § 3.3). While
the former can be reduced simply via chunked reading, the latter
requires more effort. Note that BOLT’s memory usage is much
higher due to function-oriented, linear disassembly. It can poten-
tially be reduced if selective processing used in LightningBOLT [52]
is implemented here as well. Figure 4(R) also shows the peak mem-
ory usage incurred by Phase 3 for the SPEC2017 benchmarks. For
smaller binaries, like 505.mcf and 557.xz, BOLT performs on par

2Git revision: 6db71b8f1418170324b49d20f1f7b3f7c5086066

623

https://github.com/llvm/llvm-project/tree/6db71b8f1418170324b49d20f1f7b3f7c5086066/bolt

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

Clang MySQL Spanner Search Superroot Bigtable
0

2

4

6

8

10

12

Pe
ak

 m
em

or
y

us
ag

e
(in

 G
B)

24G 36G 73G

Propeller
BOLT

50
0.p

er
lbe

nc
h

50
2.g

cc

50
5.m

cf
52

3.x
ala

nc
bm

k
52

5.x
26

4
53

1.d
ee

ps
jen

g
54

1.l
ee

la

55
7.x

z

0
50

100
150
200
250
300
350
400

Pe
ak

 m
em

or
y

us
ag

e
(in

 M
B)

1.5G 608M
Propeller
BOLT

Figure 4: Peak memory usage during profile conversion and whole program analysis for warehouse-scale
applications, open-source workloads (L) and SPEC2017 integer benchmarks (R).

Clang MySQL Spanner Search Superroot Bigtable
0

5

10

15

20

25

30

Pe
ak

 m
em

or
y

us
ag

e
(in

 G
B)

Baseline
Propeller
BOLT

50
0.p

er
lbe

nc
h

50
2.g

cc

50
5.m

cf
52

3.x
ala

nc
bm

k
52

5.x
26

4
53

1.d
ee

ps
jen

g
54

1.l
ee

la

55
7.x

z

0
25
50
75

100
125
150
175
200

Pe
ak

 m
em

or
y

us
ag

e
(in

 M
B)

436M 554M
Baseline
Propeller
BOLT

Figure 5: Peak memory usage for Propeller (Phase 4), BOLT optimizations and baseline link action on
warehouse-scale applications, open-source workloads (L) and SPEC2017 integer benchmarks (R).

or better than Propeller. For SPEC2017, the average profile size is
∼ 30𝑀 . This indicates that BOLT’s memory usage during profile
conversion does not scale with increasing workload size.

5.2 Peak Memory Usage of Phase 4: Code
Layout Optimizations and Relink

Propeller code layout optimizations do not increase peak memory con-
sumption. Figures 5(L) and 5(R) compare the peak memory usage
incurred by Propeller (Phase 4), BOLT optimizations and the base-
line link action. For Propeller, we profile the relink action in Phase
4 and for BOLT, we profile the llvm-bolt tool. For BOLT, all opti-
mizations are performed in this step while for Propeller, only global
optimizations are performed. For Propeller, local optimizations are
performed as distributed codegen actions. This comparison demon-
strates that introducing BOLT as a monolithic PLO step would shift
the peak memory bottleneck from the link action to BOLT. Linker
memory usage is somewhat well defined (≃2X size of inputs [21])
whereas the peak memory usage due to disassembly may not be.
BOLT optimizations on SPEC benchmarks 505.mcf, 531.deepsjeng
and 557.xz consume less memory than the baseline link action.

For BOLT even with selective processing, peak memory usage can
be as large as 5× the baseline link action (see Figure 4 MySQL).
For warehouse-scale applications, binary sizes grow with time (see
§ 2.1) which increases the linker memory usage. Propeller’s design
minimizes object file size increase via basic block clusters (see § 4.1)
thus limiting increased peak memory usage.

5.3 Impact on Binary Size
Propeller’s relinking based workflow avoids unnecessary binary size
increases, on average less than 1% over baseline. Figure 6 shows binary
sizes when building Propeller, BOLT, and baseline binaries. Both
optimization frameworks require building with metadata for profil-
ing (see § 3.2). The overall size for each is normalized to the size
of the baseline binary. Each bar is subdivided into .text, .eh_frame,
llvm_bb_addr_map and .rela sections. The remaining other compo-
nent includes information such as read-only data. "Base" refers to
the section wise size breakdown for the baseline binary. "PM" and
"PO" corresponds to the binary built with Propeller metadata and
optimizations respectively. "BM" and "BO" are similar but for the
BOLT binary.

624

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Clang MySQL Spanner Search Superroot Bigtable SPEC

0

25

50

75

100

125

150

175

200

No
rm

al
ize

d
se

ct
io

n
siz

e
br

ea
kd

ow
n

(%
)

Ba
se PM PO BM BO

11
3

M
12

1
M

11
4

M
15

8
M

14
4

M

Ba
se PM PO BM BO

67
 M 71
 M

67
 M

90
 M 99

 M

Ba
se PM PO BM BO

50
0

M
53

1
M

50
2

M 65
1

M 78
3

M

Ba
se PM PO BM BO

78
9

M
83

8
M

79
1

M 10
21

 M
11

48
 M

Ba
se PM PO BM BO

16
17

 M
17

18
 M

16
22

 M 20
76

 M
23

65
 M

Ba
se PM PO BM BO

27
5

M
29

0
M

27
6

M 35
3

M 42
3

M

Ba
se PM PO BM BO

2.
9

M
3.

1
M

2.
9

M
4.

7
M

11
 Mtext eh_frame bb_addr_map relocs other

Figure 6: Normalized break down of section sizes for PGO and ThinLTO (Base), Propeller Metadata (PM),
Propeller Optimized (PO), BOLT Metadata (BM) and BOLT Optimized (BO) binaries.

Metadata binaries: For Propeller, the metadata binary contains
basic block mapping information, see § 3.2 for details. For BOLT,
the metadata binary contains static relocations necessary to ease
dissasembly and binary rewriting. The executable performance is
unaffected since neither section is loaded into memory. However,
the requirement for static relocations may be prohibitive if a binary
needs to be built with debug information. Measured on a debug
build of Clang, the .rela section (required by BOLT) can be up to
43% of the overall binary size (1.7G). Overall, Propeller and BOLT
metadata binaries are 7-9% and 20-60% larger than the baseline
respectively.

Optimized binaries: Propeller optimized binaries are on average
1% larger than the baseline binary for warehouse-scale applications,
and for open-source and SPEC benchmarks. The increase can be
attributed to additional symbol names for cold function parts (see
§3.4) and eh_frame information (see § 4.4). For BOLT, the binary
size increases are significant, 30% on average for Clang andMySQL,
and 150% on average for large SPEC2017 benchmarks. BOLT retains
the original .text section since it only selectively optimizes some
functions. For warehouse-scale applications, the BOLT optimized
binary is 45% larger than the baseline. Furthermore, the new opti-
mized .text is aligned to a 2M page boundary to take advantage of
hugepages3. While this can be disabled via an option, by default it
significantly increases sizes for binaries in SPEC2017 (see Fig. 6).

5.4 Performance Evaluation of Code Layout
Optimizations

Propeller code layout optimizations improve warehouse-scale applica-
tions up to 7%, comparable to BOLT on open-source workloads. We
report the performance improvement of Propeller and BOLT in Ta-
ble 3 compared to the baseline optimized with PGO and ThinLTO.
For BOLT, we include results which use the lite=0 option to en-
able all optimizations. On Clang the BOLT optimized binary and
the Propeller optimized binary were ≃ 7% faster than the baseline.
On MySQL, we measured the mean transaction latency for five,

3https://github.com/facebookincubator/BOLT/issues/138

Table 3: Performance improvements of Propeller and
BOLT optimized binaries over PGO and ThinLTO.

Benchmark Metric % Improvements
Propeller BOLT

Clang Walltime 7.3 % 7.3 %
MySQL Latency 1 % 0.8 %
Spanner Latency 7 % Crash
Search QPS 3 % 4 %
Superroot QPS 1.1 % Crash
Bigtable QPS 3 % Crash

sysbench driven benchmarks. The performance improvement for
Propeller and BOLT was 1% and 0.8% over the baseline respectively.

For warehouse-scale applications, the Propeller optimized bi-
nary improves by 1%–7% over the baseline. Unfortunately, BOLT
optimized binaries failed at startup for all but one of the warehouse-
scale applications. For Search, the BOLT optimized binary is 4%
faster than the baseline whereas the Propeller optimized binary
is 3% faster. In addition to code layout, BOLT performs many dis-
assembly driven optimizations (see Table 1 in [52]). Whereas the
performance improvements for Propeller are solely due to improved
code layout.

We present instruction access heat maps for the baseline, Pro-
peller and BOLT optimized Clang binary in Figure 7. Each figure
represents the binary address space. Accesses to each offset are
marked over time for the Clang benchmark. The BOLT heat map
(Figure 7(c)) shows a band at a higher offset since the optimized
BOLT text section is placed in a new segment. Tightly laid out
bands demonstrate the efficacy of code layout optimizations by
BOLT and Propeller. This results in reduced iTLB, icache misses
and improves performance by ≃7%.

Impact of Code Layout Optimizations on SPEC2017 Integer Bench-
marks. We report the performance numbers from BOLT and Pro-
peller on all the SPEC2017 integer benchmarks except 520.omnetpp,
which fails to build with clang. BOLT improves 500.perlbench by

625

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

(a) Baseline with PGO + ThinLTO (b) PGO + ThinLTO + Propeller (c) PGO + ThinLTO + BOLT

Figure 7: Whole binary, instruction access heat maps for the Clang benchmark. Y-axis instruction address
offset labels truncated for clarity.

0.4% and Propeller improves 541.leela by 1%. BOLT regresses 5
benchmarks by 0.8% − 6.3% (2.4% on average). Propeller regresses
5 benchmarks too, 4 of them the same as BOLT, by 0.8% − 3.9% (2%
on average).

Performance counters show that Propeller and BOLT, on average,
reduced the number of taken branches and icachemisses by 10% and
20%, respectively, with the exception of 505.mcf. This is expected as
better code layout increases the number of fall-through code paths
and improves icache utilization. 505.mcf, regresses with both BOLT
and Propeller by 1% and 4%, respectively. For this benchmark, the
total number of branches and icache misses increased by 2% and 4%
respectively. Top-down analysis [71] shows that iTLB is not a major
bottleneck for all benchmarks except 502.gcc and 500.perlbench.
Propeller and BOLT do not change the performance of these two
programs.

The top-down analysis shows that DSB [6] misses on average
account for 25% of stalled frontend cycles in baseline binaries. Both
Propeller and BOLT, on average, increase the DSBmisses by 12% and
60%, respectively. The DSB is a cache for fetched instructions and
is sensitive to code alignment. Tuning Propeller’s optimizations for
smaller programs such as SPEC including effective DSB utilization
remains future work.

5.5 Analysis of Code Layout Optimizations
Using Hardware Performance Counters

We report the hardware performance counter data for two bench-
marks, Clang and Search, in Figure 8. Table 4 lists the events, the
labels used in Figure 8 along with a short description. Performance
counters which include speculative events are indicated in the de-
scription in Table 4. Both workloads were profiled on the Intel
Skylake platform. Hugepages (2M) for the .text section were en-
abled on the Search benchmark only. Workload characteristics are
presented in Table 2.
I-cache: Compared to a PGO and ThinLTO baseline, Propeller and
BOLT significantly improve code misses at the L1 and L2 for Search
(up to 30%) and Clang (up to 40%). A key observation is that both
raw misses (I1) and critical misses (I2) are improved. BOLT opti-
mizations yield an additional 1.8% i-cache miss rate improvement
over Propeller on Search. However on Clang, Propeller outperforms
BOLT on i-cache metrics by 1.4%.

iTLB: Raw iTLB misses (T1) for Clang are reduced by 23% and 21%
by Propeller and BOLT respectively. On Clang, critical iTLB misses
(T2) reduced by 28% and 18% for Propeller and BOLT respectively.
This is due to the reduced code footprint compared to the baseline
as shown in the instruction heat map (see Figure 7).

On Search, raw iTLB misses (T1) were reduced by 27% and 23%
by BOLT and Propeller respectively. iTLB misses which caused a
stall (T2) reduced by up to ≃ 85% due to improved code layout by
BOLT and Propeller. As opposed to Clang, hugepages are enabled
for the Search benchmark. While the total hot code for the Search
workload is ≃20M i.e 5% of 417M (see Table 2), Propeller and BOLT
optimizations split out cold basic blocks from hot functions. Com-
pared to the baseline, this further reduces the hot text section by
40− 50% bringing it within reach of the 8, 2M entries in the Skylake
iTLB [23].
Branches: An important characteristic of code layout performed
by BOLT and Propeller is an increase in fall-through code paths.
Not taken branches do not occupy training resources in the branch
predictor unit. Thus increasing fall-through code paths improve
branch predictor efficacy. We find that BOLT and Propeller decrease
branch resteers (B1) by ≃ 22% on Search and 24 − 30% on Clang
respectively. This effect can be attributed to the decrease in not
taken branches (B2) by 18 − 20% on Search and 15 − 20% on Clang.

In conclusion, Propeller compares favourably to BOLT with re-
spect to code layout optimizations for large workloads. However,
BOLT further improves performance by 1% on Search (see Table 3)
likely via additional optimizations, thus leaving room for improve-
ment for Propeller in the future.

5.6 End-to-End Run Time Cost of Propeller
Optimizations on Warehouse-Scale
Workloads

This section discusses the context within which Propeller opti-
mization running time is measured. Due to the high complexity of
warehouse-scale applications, the build and release processes of
these applications are also significantly complex. For example, pro-
file guided optimizations require that the application is exercised
with representative inputs. This constraint implies that profiling
the application has to be performed in a synthetic, yet realistic en-
vironment. Table 5 presents the increase in build time for PGO and

626

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

I1 I2 I3 T1 T2 B1 B20

20

40

60

80

100

No
rm

al
ize

d
pe

rfo
rm

an
ce

 c
ou

nt
er

s (
%

)

Propeller
BOLT

(a) Search (lower is better)

I1 I2 I3 T1 T2 B1 B20

20

40

60

80

100

No
rm

al
ize

d
pe

rfo
rm

an
ce

 c
ou

nt
er

s (
%

)

Propeller
BOLT

(b) Clang (lower is better)

Figure 8: Performance counter data for Search (L) and Clang (R) for BOLT and Propeller optimized binaries.
Legend detailed in Table 4.

.

Table 4: Performance counter events (details in Intel Perfmon manual [36]).

Category Label Event Name Description

i-cache events
I1 frontend_retired.l1i_miss L1 i-cache misses which caused a stall (non-speculative).
I2 l2_rqsts.code_rd_miss L2 cache instruction misses.

I3 icache_16b.ifdata_miss
(event=0x80,umask=0x2) L1 i-cache misses.

iTLB events
T1 icache_64b.iftag_miss iTLB misses.
T2 frontend_retired.itlb_miss iTLB misses which caused a stall (non-speculative).

Branch events
B1 baclears.any Front-end resteers due to branches not tracked by the predictor.
B2 br_inst_retired.near_taken Taken branch instructions (non-speculative).

Table 5: Build phases and the time taken (in minutes) for
warehouse-scale applications.

 Build
 Opt. ConvertProfile Build

 Opt.ProfileBuild

PGO + ThinLTO Propeller

Phase time taken (in minutes)
PGO (Phases 1&2) Prop. (Phases 3&4)
Instr. Profile Opt. Profile Convert Opt.

Spanner 7 48 17 45 3 9
Search 10 8 10 8 2 16
Superroot 23 37 36 18 3 15
Bigtable 9 30 13 43 18 10

Propeller over an optimized (-O3) build. For applications of such
complexity, the relatively mundane parts dwarf the actual running
time of the optimizations themselves. For example, in Superroot the
profile conversion (4m) and propeller optimized build time (15m)
is less than 15% of the overall time. We find that deploying Pro-
peller optimizations extend build-release time by 78% (on average)

for warehouse-scale applications even though the Propeller opti-
mizations run time is a small fraction, ≃18% on average, of the
whole.

Due to the outsized resource footprint of warehouse-scale appli-
cations [9] small improvements yield high aggregate savings. Thus
it is imperative to extract as much performance as possible even
when the up front cost is high and the yields diminish with each
subsequent phase. In the next section, we compare the running
time of Propeller Phase 4 with that of BOLT.

5.7 Optimization Run Time (Phase 4)
Propeller reuses cached objects. Thus, relink run time is less than
baseline link run time. In this section, we measure the time taken to
relink or rewrite the final optimized binary by Propeller and BOLT,
respectively. For Propeller, this presents the total time in Phase 4
(see § 3.4). For BOLT, it is the time taken to run llvm-bolt [52] which
optimizes and rewrites the final binary. Figure 9 compares the time
taken for Propeller codegen and relink, BOLT and the baseline
link action. Each benchmark shows 3 bars. "Base" corresponds to
the time taken to build the baseline optimized binary, equivalent
to Phase 2. The bar is divided to present the time taken in the
"Backends" (optimized IR to object file generation) and "Linking"
(the final link). "Prop." corresponds to the time taken to build the

627

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

Clang MySQL Spanner Search Superroot Bigtable

0

25

50

75

100

125

150

175

Op
tim

iza
tio

n
ru

n
tim

e
(in

 se
co

nd
s)

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

179 199

Ba
se

Pr
op

.
BO

LT

369 498

Ba
se

Pr
op

.
BO

LT

Backends Linking BOLT

50
0.p

erl
be

nch

50
2.g

cc

50
5.m

cf

52
3.x

ala
ncb

mk

52
5.x

26
4

53
1.d

ee
psj

en
g

54
1.l

ee
la

55
7.x

z

0

2

4

6

8

Op
tim

iza
tio

n
ru

n
tim

e
(in

 se
co

nd
s)

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

32 32 14

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Ba
se

Pr
op

.
BO

LT

Backends Linking BOLT

Figure 9: Optimization run time of warehouse-scale applications, open-source workloads (L) and
SPEC2017 benchmarks (R).

Propeller-optimized binary in Phase 4 (§ 3.4). Here only the object
files that need to be modified are re-generated and then passed
to the final relink. Finally, "BOLT" shows the time needed to run
llvm-bolt.

The benchmarks Clang, MySQL, and SPEC were built on a work-
station. For these benchmarks, BOLT is faster than Propeller on
average by 200% (max 400%). With Propeller, the time taken to
generate the backends on a workstation dominates the total time.

For warehouse-scale applications, Propeller reuses the cold ob-
ject files from the cache - 83% to 95% of total object files. For the
remaining object files, the codegen backends are rerun concur-
rently to generate optimal layout for hot functions. We find that
Propeller codegen time and subsequent link (critical path for dis-
tributed build actions) is on average 35% lower than the baseline
codegen and link time. In the best case, Propeller relink time is 61%
lower than the baseline link time (95% of objects are cold). BOLT
is hindered by the need for disassembly, taking a large amount
of time to process. Propeller is on average, 62% faster than BOLT
in this step. On SPEC2017, BOLT optimization run time is faster
than the baseline and Propeller in all cases. In the next section, we
enumerate the challenges we encountered when evaluating BOLT
on warehouse-scale applications.

5.8 BOLT Evaluation Challenges
We found and reported multiple issues in BOLT, such as an out-
of-bounds memory access when processing exception handling
frames in very large binaries [54]. BOLT does not natively support
restartable sequences and will rewrite the code in abort sequences
pointed to by the __𝑟𝑠𝑒𝑞_𝑐𝑠_𝑝𝑡𝑟_𝑎𝑟𝑟𝑎𝑦 API [13, 19]. Similarly, pro-
grams containing cryptographic modules subject to FIPS-140-2 [56]
are required to perform startup integrity checks verifying that the
code of the cryptographicmodule hasn’t been tamperedwith, which
needs special treatment in binary rewriting tools. Furthermore, bi-
naries optimized using BOLT cannot currently be stripped [55]
which makes them impractical for systems which store debug in-
formation on separate servers. The high memory requirements of
BOLTmake it infeasible to run it on a distributed build environment

as opposed to a powerful developer workstation. However, the lat-
ter is not a trusted build environment, which makes it unsuitable
for software supply chain verifiability and insider risk reduction
programs. Finally, we were unable to evaluate BOLT on 3 of 4
warehouse-scale applications presented in this work due to failures
on binary startup. Thus our experience with BOLT reinforces the
pitfalls of disassembly driven post link optimizations.

6 RELATEDWORK
After BOLT [51, 52], CodeStitcher [42] is the closest work to Pro-
peller and is an inter-procedural basic block layout optimizer that
uses sampled hardware profiles from the binary. CodeStitcher is
implemented as part of LLVM’s LTO [26] framework, where the
inter-procedural analysis determines the order of basic blocks. Since
CodeStitcher is part of full LTO, it inherits the scalability issues
associated with it. CodeStitcher needs to be re-architected to work
with ThinLTO and some of the design decisions made with Pro-
peller could be used in that case. CodeMason [69] is another binary
optimizer which is similar to BOLT [51] and uses disassembly and
binary rewriting to further optimize binaries using post-link op-
timizations. Particularly, function reordering, alignment and PLT
optimizations are applied. In [57], code layout optimizations are
implemented on Spike [18] to improve the performance of transac-
tion processing workloads. Spike [18] is similar to BOLT in that it
is a binary optimizer and does not relink like Propeller.

MAO [31] is a microarchitectural optimizer that works at the
assembly level and has a number of peep-hole and pattern matching
optimizations to avoid some of the microarchitectural bottle-necks.
MAO cannot do whole program optimizations since it optimizes
one assembly module at a time. The optimizations done in MAO
could also be done in Propeller, and as whole program optimiza-
tions. Other link time and post link optimzers and binary rewriting
and patching frameworks like ALTO [46], PLTO [58], ATOM [60],
Diablo [65], DynInst [15], FDPR [47], Spike [18], Ispike [44], and
TMS320C32x [35] have been developed to perform post link op-
timizations that are hard to do at compile time. They are either
not profile guided or are not built for scalabilty. Propeller differs in

628

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

that it does not directly rewrite the binary and these optimizations
could also be implemented in Propeller.

Dynamic binary optimizers like DynamoRio [14], PIN [43], Val-
grind [48], and QEMU [11] are frameworks that can perform a class
of dynamic binary optimizations that are beyond the reach of static
optimizers like Propeller. However, dynamic binary optimizers have
non-trivial performance overheads from the managed execution
engine and have found potential applications in program tracing
and program behavior analysis.

7 CONCLUSION
The focus of our work is to bring post link optimizations (PLO) to
production environments for warehouse scale computing. Scalabil-
ity and soundness are the tenets which drive the design of Propeller,
a profile guided relinking optimizer for PLO. Propeller enables fine
grained PLO using basic block sections, a novel linker abstraction.
Propeller achieves scalability and soundness by avoiding disassem-
bly, reusing cached build actions wherever possible, relying on
simple whole program analysis, performing local optimizations
concurrently, and minimizing the global optimization cost in the
final relink phase. Our experiments show that Propeller-optimized
warehouse scale applications improve performance while keeping
build actions inexpensive. We have enabled Propeller in production
with tens of millions of cores running Propeller optimized binaries.
The framework is available to the community as part of the LLVM
project.

ACKNOWLEDGEMENTS
Our thanks to Teresa Johnson, Tipp Moseley, Parthasarathy Ran-
ganathan, Rajiv Gupta, Svilen Kanev and other anonymous review-
ers for their feedback on the manuscript. We would also like to
thank prior interns, Manasij Mukherjee, Fatih Bakir and Brett Cha-
labian for their contributions to the project.

DATA-AVAILABILITY STATEMENT
The scripts that support the findings of this study are openly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.7222794, reference
number [59].

A ARTIFACT APPENDIX
In this section, we present the means to replicate the results on
a standalone machine. We show Propeller can achieve equitable
performance to Lightning BOLT with lower peak memory con-
sumption. A key aspect of Propeller enabled optimizations is the
integration with a distributed build system which provides caching.
To demonstrate the effect of caching we provide scripting which em-
ulates the effect on a single machine. The latest instructions to use
Propeller are publicly available at https://github.com/google/llvm-
propeller.

A.1 Artifact Check-List (Meta-information)
• Algorithm: Profile-guided relinking using basic block sections
• Program: Target workload is a clang bootstrap build
• Git hash of clang: 6db71b8f1418170324b49d20f1f7b3f7c5086066
• Compilation: CMake with clang-16
• Transformations: Post link code layout transformations

• Binary: 64-bit x86 Linux ELF
• Run-time environment: Bare metal, requires access to hardware
performance counters

• Hardware: Intel Skylake or newer, hardware profiling requires
Intel LBR.

• Metrics: Runtime, peak memory usage
• Output: Post link optimized binary, instruction access heatmaps.
• Experiments:
(1) Performance of binary built with FDO vs Propeller vs BOLT
(2) Impact of caching on Propeller build latency
• How much disk space required (approximately)?: 30GB
• How much time is needed to prepare the workflow (approx-
imately)?: 30 minutes

• Howmuch time is needed to complete experiments (approx-
imately)?: 4 hours (most of it is waiting on the script to finish)

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache 2.0 License with
LLVM exceptions

• Workflow framework used?: No
• Archived: https://doi.org/10.5281/zenodo.7222794

A.2 Description
In the following sections we describe the hardware and software
dependencies. The software dependencies include the scripts we
provide in the cloud machine to run and execute the experiments.

A.2.1 Hardware Dependencies. The minimum requirements in or-
der to build and run the experiments are:

Intel Haswell or newer (preferably Skylake)
16 GB RAM

A.2.2 Software Dependencies. The experiments use a bootstrap
version of clang. The dependencies of LLVMwhen built with CMake
are documented here: .

System
clang-16, lld
cmake
ninja
linux perf
git

Built from source by the script
create_llvm_prof
perf2bolt
llvm-bolt

A.2.3 How to Access. The latest version of instructions to run
Propeller are available at: https://github.com/google/llvm-propeller.
The scripts presented in the artifact evaluation are archived at
https://doi.org/10.5281/zenodo.7222794.

REFERENCES
[1] 1996. COFF. https://wiki.osdev.org/COFF (accessed 2020).
[2] 2003. ELF - format of Executable and Linking Format (ELF) files. http://man7.org/

linux/man-pages/man5/elf.5.html (accessed Aug 20 2019).
[3] 2009. OS X ABI Mach-O File Format Reference. https://developer.apple.com/
[4] 2010. LLVM MC Project. http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.

html (accessed Aug 15 2019).
[5] 2019. Machine IR (MIR) Format Reference Manual. https://llvm.org/docs/

MIRLangRef.html (accessed Aug 20 2019).
[6] 2019. MITE Micro-ops to IDQ. https://software.intel.com/en-us/forums/intel-

performance-bottleneck-analyzer/topic/308522 (accessed Aug 20 2019).

629

https://doi.org/10.5281/zenodo.7222794
https://github.com/google/llvm-propeller
https://github.com/google/llvm-propeller
https://doi.org/10.5281/zenodo.7222794
https://llvm.org/docs/CMake.html
https://github.com/google/llvm-propeller
https://doi.org/10.5281/zenodo.7222794
https://wiki.osdev.org/COFF
http://man7.org/linux/man-pages/man5/elf.5.html
http://man7.org/linux/man-pages/man5/elf.5.html
https://developer.apple.com/
http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
https://llvm.org/docs/MIRLangRef.html
https://llvm.org/docs/MIRLangRef.html
https://software.intel.com/en-us/forums/intel-performance-bottleneck-analyzer/topic/308522
https://software.intel.com/en-us/forums/intel-performance-bottleneck-analyzer/topic/308522

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, and Xinliang David Li

[7] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. 2016. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
25th {USENIX} Security Symposium ({USENIX} Security 16). 583–600.

[8] ARM. 2021. Branch and Call Sequences Explained. https:
//community.arm.com/developer/ip-products/processors/b/processors-ip-
blog/posts/branch-and-call-sequences-explained [Online; accessed 6-August-
2021].

[9] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture. 462–473.

[10] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The data-
center as a computer: Designing warehouse-scale machines. Synthesis Lectures
on Computer Architecture 13, 3 (2018), i–189.

[11] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[12] P. Briggs, Doug Evans, B. Grant, R. Hundt, W. Maddox, D. Novillo, Seongbae
Park, D. Sehr, Ian Taylor, and Ollie. [n. d.]. WHOPR-Fast and Scalable Whole
Program Optimizations in GCC Initial Draft 12-Dec-2007.

[13] Derek Bruening. 2017. Restartable Sequences. https://dynamorio.org/page_rseq.
html (accessed 2022).

[14] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infras-
tructure for adaptive dynamic optimization. In International Symposium on Code
Generation and Optimization, 2003. CGO 2003. IEEE, 265–275.

[15] Bryan Buck and Jeffrey K Hollingsworth. 2000. An API for runtime code patching.
The International Journal of High Performance Computing Applications 14, 4 (2000),
317–329.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In 7th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). 205–218.

[17] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: automatic
feedback-directed optimization for warehouse-scale applications. In Proceedings
of the 2016 International Symposium on Code Generation and Optimization, CGO
2016, Barcelona, Spain, March 12-18, 2016. 12–23. https://doi.org/10.1145/2854038.
2854044

[18] Robert S Cohn, David W Goodwin, P Geoffrey Lowney, and N Rubin. 1997.
Optimizing alpha executables on windows nt with spike. Digital Technical Journal
9 (1997), 3–20.

[19] Jonathan Corbet. 2015. Restartable Sequences. https://lwn.net/Articles/650333/
(accessed 2022).

[20] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages. https:
//doi.org/10.1145/2491245

[21] Cary Coutant. 2013. DWARF Extensions for Separate Debug Information Files a.k.a.
"Fission" project. https://gcc.gnu.org/wiki/DebugFission

[22] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet, and Koen
De Bosschere. 2004. Link-time optimization of ARM binaries. In Proceedings of
the 2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems. 211–220.

[23] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha
Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. 2017.
Inside 6th-generation intel core: New microarchitecture code-named skylake.
IEEE Micro 37, 2 (2017), 52–62.

[24] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In Proceedings of the 38th
International Conference on Software Engineering Companion (Austin, Texas) (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 11–20. https:
//doi.org/10.1145/2889160.2889222

[25] The LLVM Foundation. 2002. The LLVM Compiler Infrastructure. http://llvm.org
(accessed Aug 20 2019).

[26] The LLVM Foundation. 2002. LLVM Link Time Optimization: Design and Imple-
mentation. https://llvm.org/docs/LinkTimeOptimization.html (accessed Aug 20
2019).

[27] The LLVM Foundation. 2020. SHT_LLVM_BB_ADDR_MAP Section (basic block
address map). https://llvm.org/docs/Extensions.html#sht-llvm-bb-addr-map-
section-basic-block-address-map

[28] Taras Glek and Jan Hubicka. 2010. Optimizing real world applications with GCC
link time optimization. arXiv preprint arXiv:1010.2196 (2010).

[29] Google Propeller. 2021. llvm-propeller. https://github.com/google/llvm-propeller
(accessed 2021).

[30] Aysylu Greenberg. 2016. Building a Distributed Build System at Google
Scale. https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_
BuildingADistributedBuildSystemAtGoogleScale.pdf

[31] Robert Hundt, Easwaran Raman, Martin Thuresson, and Neil Vachharajani. 2011.
MAO–An extensible micro-architectural optimizer. In Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimization.
IEEE Computer Society, 1–10.

[32] Andrew Hamilton Hunter, Chris Kennelly, Darryl Gove, Parthasarathy Ran-
ganathan, Paul Jack Turner, and Tipp James Moseley. 2021. Beyond malloc
efficiency to fleet efficiency: a hugepage-aware memory allocator. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21).

[33] IBM. 2021. Using remote build clearmake command. https:
//www.ibm.com/docs/en/rational-clearcase/9.0.0?topic=feature-using-remote-
build-clearmake-command [Online; accessed 6-August-2021].

[34] LLVM Compiler Infrastructure. 2003. Exception Handling in LLVM. https:
//llvm.org/docs/ExceptionHandling.html

[35] Texas Instruments. 2015. TMS320C28x Optimizing C/C++ Compiler.
http://downloads.ti.com/docs/esd/SPRU514I/Content/SPRU514I_HTML/
post_link_optimizer.html (accessed Aug 20 2019).

[36] Intel. 2017. Intel Xeon Processor Scalable Family based on Skylake microar-
chitecture. https://perfmon-events.intel.com/skylake_server.html (accessed
2022).

[37] Teresa Johnson, Mehdi Amini, and David Xinliang Li. 2017. ThinLTO: scalable
and incremental LTO. In Proceedings of the 2017 International Symposium on
Code Generation and Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017.
111–121. http://dl.acm.org/citation.cfm?id=3049845

[38] Svilen Kanev, Juan Pablo Darago, KimM.Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, Portland, OR, USA, June 13-17, 2015. 158–169. https:
//doi.org/10.1145/2749469.2750392

[39] Andi Kleen. 2016. An introduction to last branch records. https://lwn.net/Articles/
680985/ (accessed Aug 20 2019).

[40] Konrad Kleine. 2019. 2 tips to make your C projects compile 3 times
faster. https://developers.redhat.com/blog/2019/05/15/2-tips-to-make-your-c-
projects-compile-3-times-faster

[41] Kumar, Snehasish. 2021. [RFC] Machine Function Splitter. https://groups.
google.com/g/llvm-dev/c/RUegaMg-iqc/m/wFAVxa6fCgAJ [Online; accessed
6-August-2021].

[42] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher: inter-
procedural basic block layout optimization. In Proceedings of the 28th International
Conference on Compiler Construction, CC 2019, Washington, DC, USA, February
16-17, 2019. 65–75. https://doi.org/10.1145/3302516.3307358

[43] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Acm sigplan notices, Vol. 40. ACM, 190–200.

[44] Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney.
2004. Ispike: A post-link optimizer for the Intel® Itanium® architecture. In
Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society, 15.

[45] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P Geoffrey Lowney,
and Robert Cohn. 2002. Profile-guided post-link stride prefetching. In Proceedings
of the 16th international conference on Supercomputing. 167–178.

[46] Robert Muth, Saumya K Debray, Scott Watterson, and Koen De Bosschere. 2001.
alto: a link-time optimizer for the Compaq Alpha. Software: Practice and Experi-
ence 31, 1 (2001), 67–101.

[47] Itai Nahshon and David Bernstein. 1996. FDPR: A Post-pass Object-code Opti-
mization Tool. In International Conference on Compiler Construction.

[48] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, Vol. 42. ACM,
89–100.

[49] Andy Newell and Sergey Pupyrev. 2018. Improved Basic Block Reordering. CoRR
abs/1809.04676 (2018). arXiv:1809.04676 http://arxiv.org/abs/1809.04676

[50] Maksim Panchenko. 2022. BOLTOpen Projects. https://discourse.llvm.org/t/bolt-
open-projects/61857 (accessed 2022).

[51] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:
A Practical Binary Optimizer for Data Centers and Beyond. In IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO 2019, Washington,
DC, USA, February 16-20, 2019. 2–14. https://doi.org/10.1109/CGO.2019.8661201

[52] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni. 2021.
Lightning BOLT: Powerful, Fast, and Scalable Binary Optimization. In Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler Construction
(Virtual, Republic of Korea) (CC 2021). Association for Computing Machinery,
New York, NY, USA, 119–130. https://doi.org/10.1145/3446804.3446843

[53] Rachel Potvin and Josh Levenberg. 2016. Why Google stores billions of lines of
code in a single repository. Commun. ACM 59, 7 (2016), 78–87.

630

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/branch-and-call-sequences-explained
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/branch-and-call-sequences-explained
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/branch-and-call-sequences-explained
https://dynamorio.org/page_rseq.html
https://dynamorio.org/page_rseq.html
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2854038.2854044
https://lwn.net/Articles/650333/
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://gcc.gnu.org/wiki/DebugFission
https://doi.org/10.1145/2889160.2889222
https://doi.org/10.1145/2889160.2889222
http://llvm.org
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/Extensions.html#sht-llvm-bb-addr-map-section-basic-block-address-map
https://llvm.org/docs/Extensions.html#sht-llvm-bb-addr-map-section-basic-block-address-map
https://github.com/google/llvm-propeller
https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_BuildingADistributedBuildSystemAtGoogleScale.pdf
https://gotocon.com/dl/goto-chicago-2016/slides/AysyluGreenberg_BuildingADistributedBuildSystemAtGoogleScale.pdf
https://www.ibm.com/docs/en/rational-clearcase/9.0.0?topic=feature-using-remote-build-clearmake-command
https://www.ibm.com/docs/en/rational-clearcase/9.0.0?topic=feature-using-remote-build-clearmake-command
https://www.ibm.com/docs/en/rational-clearcase/9.0.0?topic=feature-using-remote-build-clearmake-command
https://llvm.org/docs/ExceptionHandling.html
https://llvm.org/docs/ExceptionHandling.html
http://downloads.ti.com/docs/esd/SPRU514I/Content/SPRU514I_HTML/post_link_optimizer.html
http://downloads.ti.com/docs/esd/SPRU514I/Content/SPRU514I_HTML/post_link_optimizer.html
https://perfmon-events.intel.com/skylake_server.html
http://dl.acm.org/citation.cfm?id=3049845
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://lwn.net/Articles/680985/
https://lwn.net/Articles/680985/
https://developers.redhat.com/blog/2019/05/15/2-tips-to-make-your-c-projects-compile-3-times-faster
https://developers.redhat.com/blog/2019/05/15/2-tips-to-make-your-c-projects-compile-3-times-faster
https://groups.google.com/g/llvm-dev/c/RUegaMg-iqc/m/wFAVxa6fCgAJ
https://groups.google.com/g/llvm-dev/c/RUegaMg-iqc/m/wFAVxa6fCgAJ
https://doi.org/10.1145/3302516.3307358
https://arxiv.org/abs/1809.04676
http://arxiv.org/abs/1809.04676
https://discourse.llvm.org/t/bolt-open-projects/61857
https://discourse.llvm.org/t/bolt-open-projects/61857
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1145/3446804.3446843

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[54] Krzysztof Pszeniczny. 2022. llvm-bolt registers .eh_frames which may refer to un-
mapped sections. https://github.com/llvm/llvm-project/issues/56726 (accessed
2022).

[55] Krzysztof Pszeniczny. 2022. Stripping BOLTed binaries may result in misaligned
PT_LOADs. https://github.com/llvm/llvm-project/issues/56738 (accessed 2022).

[56] NIST FIPS PUB. 2001. 140-2: Security requirements for cryptographic modules.
Information Technology Laboratory, National Institute of Standards and Technology
(2001).

[57] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert Cohn, Josep
Larriba-Pey, P Geoffrey Lowney, and Mateo Valero. 2001. Code layout opti-
mizations for transaction processing workloads. In ACM SIGARCH Computer
Architecture News, Vol. 29. ACM, 155–164.

[58] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre.
2001. Plto: A link-time optimizer for the Intel IA-32 architecture. In Proc. 2001
Workshop on Binary Translation (WBT-2001). Citeseer.

[59] Han Shen, Rahman Lavaee, Krzysztof Pszeniczny, Snehasish Kumar, Sriraman
Tallam, and Xinliang (David) Li. 2022. Artifacts for "Propeller: A Profile Guided,
Relinking Optimizer for Warehouse Scale Applications". https://doi.org/10.5281/
zenodo.7222794

[60] Amitabh Srivastava and Alan Eustace. 2004. ATOM: A system for building
customized program analysis tools. ACM SIGPLAN Notices 39, 4 (2004), 528–539.

[61] James Swift. 2017. Crazy Fast Builds Using distcc. https://pspdfkit.com/blog/
2017/crazy-fast-builds-using-distcc/

[62] Sriraman Tallam. 2020. LLD Support for Basic Block Sections. https://reviews.
llvm.org/rG94317878d826 (accessed June 29, 2022).

[63] Ian Lance Taylor. 2008. A New ELF Linker. In Proceedings of the GCC Developers’
Summit. http://ols.fedoraproject.org/GCC/Reprints-2008/taylor-reprint.pdf

[64] Rui Ueyama. 2017. LLD - The LLVM Linker. https://lld.llvm.org/lld
[65] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen

De Bosschere. 2005. Diablo: a reliable, retargetable and extensible link-time
rewriting framework. In Proceedings of the Fifth IEEE International Symposium on
Signal Processing and Information Technology, 2005. IEEE, 7–12.

[66] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R Nair, Mauricio Breternitz,
Zhiwei Ying, and YoufengWu. 2007. Stardbt: An efficient multi-platform dynamic
binary translation system. In Asia-Pacific Conference on Advances in Computer
Systems Architecture. Springer, 4–15.

[67] Kaiyuan Wang, Greg Tener, Vijay Gullapalli, Xin Huang, Ahmed Gad, and Daniel
Rall. 2020. Scalable build service system with smart scheduling service. In Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 452–462.

[68] Wikipedia contributors. 2021. Monorepo — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Monorepo&oldid=1024603377
[Online; accessed 6-August-2021].

[69] David Williams-King and Junfeng Yang. 2019. CodeMason: Binary-Level Profile-
Guided Optimization (FEAST’19). Association for Computing Machinery, New
York, NY, USA, 47–53. https://doi.org/10.1145/3338502.3359763

[70] Wired. 2011. Artificial intelligence: it’s nothing like we expected - Internet Search.
https://www.wired.co.uk/article/artificial-intelligence (accessed 2022).

[71] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 35–44.

Received 2022-07-07; accepted 2022-09-22

631

https://github.com/llvm/llvm-project/issues/56726
https://github.com/llvm/llvm-project/issues/56738
https://doi.org/10.5281/zenodo.7222794
https://doi.org/10.5281/zenodo.7222794
https://pspdfkit.com/blog/2017/crazy-fast-builds-using-distcc/
https://pspdfkit.com/blog/2017/crazy-fast-builds-using-distcc/
https://reviews.llvm.org/rG94317878d826
https://reviews.llvm.org/rG94317878d826
http://ols.fedoraproject.org/GCC/Reprints-2008/taylor-reprint.pdf
https://lld.llvm.org/lld
https://en.wikipedia.org/w/index.php?title=Monorepo&oldid=1024603377
https://doi.org/10.1145/3338502.3359763
https://www.wired.co.uk/article/artificial-intelligence

	Abstract
	1 Introduction
	1.1 Why Do We Need a New Paradigm?
	1.2 Our Contributions

	2 Background
	2.1 Distributed Build Systems
	2.2 Profile Guided Optimizations (PGO)
	2.3 Link Time Optimizations (LTO)
	2.4 Post Link Optimizations (PLO)

	3 Design of a Profile Guided, Relinking Optimizer
	3.1 Phase 1 - Compile and Cache Optimized LLVM IR
	3.2 Phase 2 - Build Optimized Binary with Profile Mapping Metadata
	3.3 Phase 3 - Profile Collection and Whole Program Analysis (WPA)
	3.4 Phase 4 - Relinking to Yield a Propeller Optimized Binary
	3.5 Design of Propeller Optimizations

	4 Basic Block Sections
	4.1 Object File Metadata
	4.2 Branch Relocations and Explicit Fall-Through
	4.3 Debug Information
	4.4 Call Frame Information (CFI)
	4.5 Exception Handling
	4.6 Use Case: Low Overhead Function Splitting
	4.7 Use Case: Inter-Procedural Code Layout

	5 Evaluation
	5.1 Peak Memory Usage of Phase 3: Profile Conversion and Whole Program Analysis
	5.2 Peak Memory Usage of Phase 4: Code Layout Optimizations and Relink
	5.3 Impact on Binary Size
	5.4 Performance Evaluation of Code Layout Optimizations
	5.5 Analysis of Code Layout Optimizations Using Hardware Performance Counters
	5.6 End-to-End Run Time Cost of Propeller Optimizations on Warehouse-Scale Workloads
	5.7 Optimization Run Time (Phase 4)
	5.8 BOLT Evaluation Challenges

	6 Related Work
	7 Conclusion
	A Artifact Appendix
	A.1 Artifact Check-List (Meta-information)
	A.2 Description

	References

