2018 IEEE International Symposium on High Performance Computer Architecture

NACHOS: Software-Driven Hardware-Assisted Memory Disambiguation for

Accelerators
Naveen Vedula, Arrvindh Shriraman, Snehasish Kumar, and William N Sumner
School of Computing Sciences
Simon Fraser University, Burnaby, Canada
Email: {nvedula, ashriram, skal24, wsumner}@sfu.ca

Abstract—Hardware accelerators have relied on the compiler
to extract instruction parallelism but may waste significant
energy in enforcing memory ordering and discovering memory
parallelism. Accelerators tend to either serialize memory oper-
ations [43] or reuse power hungry load-store queues (LSQs) [8],
[27]. Recent works [11], [15] use the compiler for scheduling
but continue to rely on LSQs for memory disambiguation.

NACHOS is a hardware assisted software-driven approach
to memory disambiguation for accelerators. In NACHOS, the
compiler classifies pairs of memory operations as NO alias (i.e.,
independent memory operations), MUST alias (i.e., ordering
required), or MAY alias (i.e., compiler uncertain). We developed
a compiler-only approach called NACHOS-SW that serializes
memory operations both when the compiler is certain (MUST
alias) and uncertain (MAY alias). Our study analyzes multiple
stages of alias analysis on 135 acceleration regions extracted
from SPEC2K, SPEC2k6, and PARSEC. NACHOS-SW is en-
ergy efficient, but serialization limits performance; 18 %-100%
slowdown compared to an optimized LSQ. We then proposed
NACHOS a low-overhead, scalable, hardware comparator assist
that dynamically verifies MAY alias and executes independent
memory operations in parallel. NACHOS is a pay-as-you-go
approach where the compiler filters out memory operations to
save dynamic energy, and the hardware dynamically checks
to find MLP. NACHOS achieves performance comparable to
an optimized LSQ; in fact, it improved performance in 6
benchmarks(6%—70%) by reducing load-to-use latency for
cache hits. NACHOS imposes no energy overhead in 15 out of
27 benchmarks i.e., compiler accurately determines all memory
dependencies; the average energy overhead is ~6% of total
(accelerator and L1 cache); in comparison, an optimized LSQ
consumes 27% of total energy. NACHOS is released as free
and open source software. Github: https://github.com/sfu-arch/
nachos

Keywords-Hardware accelerators; Dataflow; Memory disam-
biguation; Load-Store Queues; Alias Analysis;

1. Introduction

Out-of-order(OOO) execution enables high performance by
executing many instructions in parallel. Memory disambigua-
tion is required to enforce program order between operations
accessing the same memory location (for correctness) while
executing those that access different locations in parallel (for
performance). Accelerators execute instructions out-of-order
as well (typically with a dataflow architecture) and need
memory disambiguation support as well.

Often hardware accelerators target regular algorithms where
memory dependencies are resolved early on at hardware
design time, and the dataflow is carefully orchestrated [23],
[44]. Spatial accelerators that tend to target a broad range
of program behavior (e.g., CGRAs [29], Dyser [8]) rely
on the compiler to find instruction level parallelism. Still

they continue to rely on the OOQ’s Load-Store-Queue
(LSQ) to enforce memory ordering and are integrated into
OOQ’s pipeline; this limits the number of operations in
the accelerated region. Some accelerators constrain the
accelerated region (e.g., basic blocks [43] and compound
function units [10]), to only have a single memory operation
further limiting granularity. Recent work has also shown
that significant energy efficiency can be gained from rec-
ognizing nearby store-load dependencies and localizing the
communication [11], [12]. Memory disambiguation influences
multiple parameters in accelerators including performance,
energy, design effort and integration with the processor.

Area / Complexity Area / Gomplexity

ACHOS-SW
OPT-LSQ OZS,oftware only-’

[39,4021] .,

Energy

\ " -
Finding MLP Energy Finding MLP ne
Efficiency Efficiency
Scope Area pRomelextty NACHOS-SW vs OPT-LSQ
Accelerators i Slowdown: 8 apps, 5 -- 100%
NACHOS

(HW assisted)
NACHOS vs OPT-LSQ

= RN .
Finding MLP Energy Speedup: 6 apps, 6 -- 70%
Efficiency Net Energy: 21% reduction

Figure 1: Optimized LSQ designs vs NACHOS. Arrows
indicate the parameters that are targeted and improved.

The most prevalent approach amongst accelerators [8],
[27], [28] that require memory disambiguation is to reuse the
00O0’s LSQ. While some rely on the compiler to optimize
the memory access patterns [11], [15] they continue to use a
separate energy inefficient LSQ. Figure 1 highlights the trade-
offs in L.SQs in a hardware accelerator context. In a Coarse
Grain Reconfigurable Array (CGRA) based accelerator, we
find that the LSQ dominates overall energy consumption
(since other overheads are minimal); even an optimized
LSQ (OPT-LSQ) that is partitioned and filters power-hungry
Content Addressable Memory (CAM) accesses [30], [32],
[34]-[36], [41] accounts for 27% of total energy. It is
also unclear if the LSQ (ports and size) can be scaled to
match the memory parallelism available in the acceleration
region without additional hardware [16], [33]. Section VIII-C
includes details on the baseline OPT-LSQ we evaluate.

Our Approach: We propose NACHOS, software-driven
hardware-assisted memory disambiguation for hardware accel-

2378-203X/18/$31.00 ©2018 IEEE 710

IEEE
@ computer
DOI 10.1109/HPCA.2018.00066 ® psoaety

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

erators. NACHOS uses an LLVM-based prototype compiler
which determines the aliasing relationship between all pairs
of memory operations in the accelerated region. The pairwise
relations are labeled as MAY, MUST or NO alias to indicate
whether a pair of memory operations may, will or never
access the same memory location. NACHOS enforces memory
ordering between operations pairwise, unlike an LSQ’s
centralized approach. NACHOS handles dependent (MUST
alias) memory operations, similar to the data dependencies
in a dataflow graph. Memory operations which do not alias
(NO alias) proceed in parallel. However, often the compiler
lacks enough information to classify a pairwise relation as
MUST or NO alias. One conservative approach employed in
prior work [25], [31] is to treat MAY aliases as MUST alias.
Younger memory operations are stalled to ensure correctness
as the compiler is unable to determine whether they access
the same memory location. However, pathological scenarios
may arise where a single ambiguous memory operation may
serialize potential parallelism. NACHOS deploys hardware
checks to dynamically compare the addresses of MAY
alias memory operation pairs. Based on the check the
hardware either enforces the ordering if required or allows the
operations to proceed in parallel. We also discuss NACHOS-
SW, a software-only approach (similar to Tartan [25]) that
enforces all dependencies both when the compiler is certain
(MUST aliases) and uncertain (MAY aliases); this helps study
the limit of a software-only approach.

As far as we are aware, we are the first to comprehensively
quantify the energy and performance impact of using alias
analysis to enforce memory ordering for hardware accelera-
tors. Seminal works in application specialization (e.g., [4],
[25], [43]) mention the use of alias analysis. However, they
neither discuss qualitatively nor evaluate quantitatively the
impact of using compiler based alias analysis to enforce
correct memory ordering. Other non-accelerator works have
leveraged alias analysis for optimally scheduling memory
operations (e.g., [1], [11], [42]) but continue to rely on LSQ-
like structures for correctness. Our contributions:

o We will release NACHOS-SW, an LLVM-based com-

piler that leverages alias analysis for memory dis-
ambiguation in hardware accelerators. NACHOS-SW
adds support for inter-procedural analysis, polyhedral
analysis [9], and optimizations for removing redundant
alias checks (see § V).

o We study 135 accelerated regions (across 27 benchmarks)
with four stages of alias analysis and find that while
a software-only approach (NACHOS-SW) improves
energy efficiency over an LSQ, compiler ambiguity
excessively serializes operations. Six applications; 18%—
100% slowdown (see § VI).

o We propose NACHOS, a decentralized hardware assist
that dynamically disambiguates accesses to extract mem-
ory parallelism (see § VII). NACHOS’s performance is
comparable to an optimized LSQ (OPT-LSQ). In six
workloads performance improves (6%—70%) due to
improved load-to-use latency for cache hits. NACHOS
saves 21% energy compared to OPT-LSQ (see § VIII).

II. Scope and Related Work

Here we contrast the centralized approach adopted by
conventional LSQs to a distributed approach proposed by
NACHOS. We also discuss current accelerator designs and
how they can benefit from NACHOS (§ II-B).

A. Memory ordering with LSQs and NACHOS

Memory disambiguation helps enforce the ordering be-
tween memory operations which access the same location
from a single thread in a program. The following orderings
are enforced (see Figure 2:example): i) S7T-ST ordering: in-
order retirement of stores to the same address to ensure the
final value in a location (e — 6) , i1) ST-LD ordering, to
forward in-flight values from older stores to younger loads
(e — @), and iii) LD-ST ordering, to ensure that stores
do not overwrite the values of older loads (@%e); LD-LD
ordering is only required in parallel racy programs.

Figure 2 illustrates the LSQ; a content-addressable queue
each for load and store operations. LSQs logically order
entries based on their age (either by physically ordering
entries based on age or by explicitly encoding the age). Every

LsQ NACHOS-SW NACHOS
HW-only Software-only SW-driven HW-assisted
Program Scheduler: HW Alias (1,2) ? MAY Alias (1,2) ? MAY
Order Inorder frontend Alias (3,4) ? MUST Alias (3,4) ? MUST LSQ NACHOS-SW [NACHOS
. & o Alias(1,6) ? NO Alias(1,6) ? NO Scope 000 Accelerators
11.Store” 8 \oos0@ 88 L .. | Ll Sched. Implicit Explicit (dataflow)
W 2. Load B L ® Cl® A (]oa Store * L 0_S_t97re * Ordering Runtime || Compile time | Hybrid
g 3. Store A % A g A I—=? ¢=='_7 Hardware 1-N None (==
B . X CAM
4. Load A
l 5. Store A Order enforced by @ Load B Store A @ Load B ?Store A gai;eOrder §0 Yes (possible) §0
1-to-many checks Load A erj. —
6.Load C y ®Loadc PLO3A @oadc @? 0adA | ¢ alabitity | — v v
@ store A @ store A Energy — 4 v

Order enforced
1-to-1 between MAY and MUST

MAY aliases are
checked in hw (==?)

Figure 2: LSQ vs NACHOS-SW and NACHOS. Arrow between operations indicate memory dependency edges

(MDEs).

711

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

in-flight memory operation has to perform an expensive 1-N
search against every other memory operations to identify
potential matches. Loads (O in the figure) check for older
stores in the Store Queue (SQ) and matched stores forward
their values. Stores check (®) for matches in both queues
to detect potential ordering violations. A challenge unique
to dataflow based architectures [34] is that they lack a
front-end and the LSQs have to rely on a compiler to
explicitly indicate the age. This can lead to over-provisioning
of the LSQ [40] and increased occupancy [13]; here we
observe a noticeable performance impact due to inorder issue
of memory operations (see § VI) Another challenge with
incorporating LSQ-based approaches is scaling up and down
with the number of memory operations and memory level
parallelism (MLP) in the accelerated region. In the accelerated
region, memory operations can vary a lot, from 0-38% and
MLP between 2—128 (see Table II). This impacts energy
and area; Section VIII-C includes details on the baseline.

NACHOS-SW is a software-only approach (see Figure 2).
The compiler analyzes pairwise relations between memory
operations and assigns a label for every pair: NO alias, MUST
alias (operations need to be ordered), or MAY alias (the
compiler is uncertain). In the example shown, NACHOS-SW
identified that i) 0—>@ alias with each other, ii) @ does
not alias with [3,4,5], iii) o may alias with [2,3,4,5], and iv)
@ does not alias at all. The compiler inserts no dependence
edge into @;, it can execute concurrently with all operations.
To enforce ordering between the MUST alias operations
(3,4,5) and MAY alias operation (1), the compiler inserts
a dataflow ordering edge between the memory operations.
These edges are enforced by the accelerator (similar to a data
dependence). Since NACHOS-SW has no runtime information
it conservatively enforces ordering from o which increases
the critical path. For instance, if o misses in the cache other
operations and their forward slices are stalled limiting overall
performance. NACHOS-SW is orthogonal to pipecheck [22]
which verifies whether a microarchitecture graph (specifying
the CPU’s hardware) preserves the program order for a

particular litmus test.

NACHOS adds a hardware assist to check the memory
operations when the compiler is uncertain (i.e., MAY alias).
Unlike NACHOS-SW which serializes memory operations
when the compiler is uncertain, NACHOS can accommodate
varying degrees of MLP and number of memory operations.
To handle compiler may alias operations (21% of all pairwise
memory operation checks), NACHOS sets up a may alias
enforcement edge (c = 1o @ 9). An additional
hardware comparator implemented within the dataflow accel-
erator dynamically checks the addresses whether they alias.
If they do not alias then both @ and 9 are permitted
to proceed in parallel with o increasing MLP. NACHOS
implements the address comparison at the site of the younger
memory operation i.e., @ and 9, decentralized and in
parallel. In NACHOS, the compiler based alias analysis is
used to minimize the number of hardware checks needed. For
instance, does not have any (==?) to @,9 since the
compiler knows that 1, 4 and 5 already must alias. Overall,
NACHOS is pay-as-you-go approach and employs dynamic
checks only when the software is uncertain, and even then
enforces only the least number of pair-wise checks required
to find all the MLP.

B. How does NACHOS benefit accelerators?

Table I discusses the trade-offs in how different accelerator
types handle memory accesses. Prior approaches can be
broadly classified into four designs: i) compute-only accel-
erators, ii) compound function units with minimal memory
operations (typically 1) iii) access accelerators that leverage
regular kernel behavior and data parallelism and iv) whole
program accelerators that target arbitrary regions.

Compute-only accelerators depend on the OOO core to
perform memory accesses and thus require frequent interac-
tions with the processor. Achieving high energy efficiency
is challenging in workloads with more memory operations.
Compound function unit (CFU) based accelerators combine
frequently used operations but often terminate CFUs at a
memory operation, limiting acceleration granularity. Memory

Compute-Only | Compound Unit Access Accelerator Program Accelerator
Dyser [8] CFU [4], [10],C-Core [43] MAD [15].DESC [11] | Tartan [25],SEED [27]
Scope Hyperblocks @/ Kernels Program
Target Granularity 10s of ops @/ ‘ 10s of ops 100s of ops Nested loops
Mem. Ops? None; 1-per block /@l Regular: multiple ops. Irregular: Depends. /@l
Mem. Ordering 000 Inorder Large LSQ /@/ Serialize and LSQ [27]
Design MLP Limited High Depends
Integration Close to OO0 Uncore L1-cache
<000 High @/ Medium (on block termination) @/ N/A
Compiler support N/A Targeted use. CFU design [10], Parallelizing NO alias loads [11], [25]

Benefits of NACHOS for each accelerator type

Find MLP (D v [v

VIrregular program regions

Energy Efficiency @

v'Decouple from OO0

v'Decouple from LSQ |

Coarse Offload.(®

v'Multiple mem-ops, Increase Accel. granularity

VIrregular programs

Low HW overhead.@

V. Accelerators only need ability to enforce dependencies explicitly.

Table I: Comparison of how accelerators handle memory accesses. Also lists the specific benefits of NACHOS for each

accelerator.

712

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

ordering demands that the compound operations execute in
order which also limits performance. As observed by prior
work [27], such designs continue to rely on an OOO for
achieving performance. Access accelerators largely focus on
optimizing the schedule and continue to use a conventional
LSQ for memory ordering. These techniques focus on regular
data loops and kernels, and high MLP requires large multi-
ported LSQs (DESC [11, Section 3.3]: 128 entries, MAD [15,
Section 5.4]: 4 ported LSQs). Perhaps the most closely related
work to ours is accelerators that target whole programs and do
not rely on the OOO core for memory accesses and memory
ordering. Such accelerators have primarily been demonstrated
on loop-dominated workloads [25] and in the presence of
irregular memory accesses (e.g., linked lists) tend to serialize
execution or require LSQs [27]. Prior work has neither
qualitatively nor quantitatively studied the influence of alias
analysis on performance and energy efficiency of hardware
accelerators. VLIW processors [1], [6], [21] and few recent
works [11], [42] have leveraged alias analysis for scheduling
independent operations. If the operations are not independent
(or compiler is unsure), they either serialize (performance
suffers) or continue to rely on LSQ-like associative structures.

NACHOS is suited for architectures that implement the
dataflow graph and enforces data dependencies explicitly,
either with custom netlist [37], [43] or as a spatial fabric,
e.g., CGRA [8]. The dataflow-based accelerators are a natural
fit for the compiler-based memory ordering since they already
enforce data dependencies explicitly between operations. See
§VII for how we overload existing dataflow architecture
mechanisms. NACHOS benefits other accelerators in the
following manner i) Extracting MLP: NACHOS finds all
the MLP available, either with the compiler analysis or by
hardware runtime checks (where the compiler is uncertain), ii)
Energy efficiency: NACHOS leverages the compiler to filter
away many of the hardware checks and even when checking
employs decentralized checks (in-lieu of the LSQ’s central-
ized approach) iii) Decoupling from OOO: NACHOS permits
greater flexibility by effectively handling memory ordering.
Compute-only accelerators and CFU accelerators can include
multiple memory operations and increase their granularity.
Access accelerators and whole program accelerators can
effectively deal with irregular programs since NACHOS can
extract MLP with a combined hardware-software approach.
iv) Low hardware overhead: NACHOS relies on existing
logic in dataflow architectures.

III. Baseline Accelerator Framework

Here we provide a brief overview of the compiler and
baseline architecture. Our focus is the memory disambiguation
for accelerators and detailing the internals of the previously
proposed spatial accelerators [8], [10], [27] is challenging
within the page limits. We briefly summarize below.

Compiler Support: The accelerator compiler takes a pro-
gram written in a high-level language like C/C++, partitions
the application into two components, the x86 executable

713

which executes on the CPU and a dataflow graph which
maps onto the CGRA. First, we deploy NEEDLE [18],
which is an accelerator independent compiler pass that auto-
partitions the application, processes LLVM IR and constructs
the offload path. More details in the appendix. We would like
to emphasize the compiler builds on prior work; NACHOS
is only an intermediate step in the compilation process
for handling memory dependencies. Figure 3 provides an
overview of the framework.

In Step 2, we inject NACHOS’s compiler passes that
transforms the offloaded dataflow graph. NACHOS analyzes
the dataflow graph of the offload region and inserts the
requisite memory dependency edges. The offload path itself
is memory fenced to ensure ordering with respect to the
00O’s path execution. The OOO and CGRA accelerator
are loosely coupled, and all data to and from the CGRA
are passed through the caches and memory. In the baseline
system with an LSQ in Step 2: since the CGRA spatial
dataflow architecture does not have an embedded ordering
unlike instructions in an OOO, the compiler uses explicit
IDs (8 bits; max of 256 memory operations) to specify the
memory ordering (like in TRIPS [40]). Finally, we use a
CGRA mapping pass [5], [7] that schedules the LLVM IR
operations onto the grid of function units and configures
the static network. We generate a hybrid executable which
executes on a CPU and a configuration for the CGRA.

The compiler aggressively localizes data, reducing the need
for memory disambiguation. Where possible the compiler
allocates local scratchpad memory for data used only within
the accelerated program region. Examples of data directly
mapped to the scratchpad are global data accessed only by the
accelerated region and local stack variables. Both OPT-LSQ
and NACHOS only disambiguate non-local data.

Accelerator architecture and Simulation: The accelerator
we deploy is a loosely coupled CGRA with 32x32 homo-
geneous functional units similar in design to Dyser [8].
The accelerator includes its own private cache and is cache
coherent with the host CPU through the shared L2 cache.
Page limit prevents us from providing background on how
CGRAs work (the appendix includes a detailed example).
Briefly, each functional unit in the 32x32 grid maps a single
instruction from the dataflow graph of the offload path. The
data dependencies between the operations are explicitly routed
over a static mesh operand network. NACHOS explicitly adds
dependencies between memory operations, and the CGRA
enforces these dependencies using the same operand network.
The operand network also routes values from the cache at
the edge of the grid to the function units in the grid. As
noted in Step 2(Figure 3) we rely on previously released
software for mapping the LLVM IR of the offload path to
the CGRA and configuring the operand network. We use
a cycle-by-cycle timing model based on recently released
CGRA simulator [38]; the OOO core is modeled in detail
using macsim [17]. The memory hierarchy and the associated
cache coherence is modeled in detail using Ruby [24]. To

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

Baseline

wsq) @O0

= (@]]|m| % LLVM |build flags: -O3, -unroll-count=8

rogram CPU path Mem. fenced 5 000 @O0 » [Host |2 GHz, 4-way 00O, 96 entry ROB. 32
jil——18 Acc. Path \S CPU OPT-LSQ Core entry LSQ.
: — Step 1: — Sten/2: s Lis Cache [L1: 64K 4-way, 3 cycles.
=l Autoextract | —— ep 2: Shared L35 LLC : 4M shared 16 way, 25 cycles.
{{==== t-accelerator path | —— Map CGRA] MESI Directory. Memory 200 cycles.

= — Ngg, CGRA (w/ NACHOS) Accelerator
=== — * ey, “HOg i
f=—— | NEEDLE — Sm. eq 5 o CGRA |32x 32 homogeneous units [5], [7]
— —_— 9es, | 000 & | Energy [Network: 600 fJ/link. ALU : 500 fJ/INT,
=== —) CPU — = J:E [20] 1500 fI/FP.MDE. May: 500 fJ/edge Must|

D O @] 250 7 /edge
@ & L1$ [L18 | ITSQ 2 port 48 enwiev/bank. # banks 7—3
S Shared L2% I 1(86) [Loads:2500 I, Stores: 3500fJ

Figure 3: Accelerator framework. Step 1: NEEDLE [18] extracts accelerators. Step 2: Scheduler [7] maps dataflow
graph of accelerator path to CGRA. Target 1: LSQ enforces order like TRIPS [40]). Target 2: CGRA (w/ NACHOS):

Compiler adds memory dependencies.

model the power consumption, we adopt an event-based
power model similar to Aladdin [37]. We implement an
aggressive non-blocking interface to memory that buffers and
routes values from the cache to the function units (like earlier
work [27]). We evaluate three systems, OPT-LSQ — a baseline
CGRA using a hardware LSQ (§VIII-C), NACHOS-SW —
a CGRA in which the compiler conservatively enforces all
memory dependencies (§ V), and NACHOS — which builds
on NACHOS-SW and includes logic within the CGRA’s
function unit for runtime checking(§ VII). Both NACHOS
and NACHOS-SW do not require LSQ.

IV. Accelerator Workload Characteristics

We select the hottest path (i.e., high % of dynamic
instructions) with the largest number of memory operations
for this study. The accelerator paths we study here were
recently released at IISWC [19]'. Table II describes the
characteristics of the accelerated program paths. We use opti-
mal LLVM flags and aggressively unroll (-03 -mem2reg
—unroll-count=8).

Observation 1: In the accelerated code, the compiler can
allocate a notable fraction of data (e.g., stack variables) to
a local scratchpad and perfectly disambiguate such data.
Memory accesses in the acceleration path can be classified
into local or non-local (heap and global) memory based on the
compiler. Local accesses refer to memory locations which can
be allocated statically (e.g., local variables in the path). The
compiler [18], [43] can perfectly disambiguate local accesses
and promotes these accesses to a scratchpad or local registers.
Table IT: C5 refers to the % of operations which got promoted
to local registers. In 12 out of 28 applications more than 20%
of operations got promoted to local registers. NACHOS’s
restrict scope only to non-local operations Table II: C4. For
fairness, our baseline OPT-LSQ in § VIII-C, also elides local
accesses.
Observation 2: There is little conflict behavior on heap and
global memory accesses (see Table I1I: C4) .

The memory dependencies listed are for a specific

Thttps://github.com/sfu-arch/pdws

714

dynamic run; we found this relation to be the same across
several runs. Only 5 out of 27 workloads have Store-Load
dependencies. In many workloads, a large % of LSQ checks
are for independent operations. If a compiler can identify
these operations, the memory operations that actually alias
would require minimal hardware to enforce memory ordering;
NACHOS exploits this observation.

Observation 3: MLP and number of memory operations vary
significantly across workloads. Columns C1-C3 summarize
the compute and memory characteristics. A few observations
that highlight the challenge of designing a scalable memory
disambiguation unit accelerator regions can be compute
heavy with few memory operations and do not require any
memory disambiguation (e.g., blackscholes), accelerator
regions can be memory dominated (38% of operations are
memory), but not much aliasing; its imperative memory
disambiguation finds the MLP to ensure performance. (e.g.,
equake) @ accelerator regions can be memory dominated
and have a lot of aliasing which puts memory disambiguation
on the critical path of loads (e.g., fft) and There can be
high variance in MLP (C3) and the number of memory
operations across workloads, which requires the memory
disambiguation to scale both up and down (9 apps: MLP>16,
7 apps: MLP <4)

A. Why is alias analysis suited to accelerators?

VLIW compilers have extensively used alias analysis for
identifying independent memory operations [1], [6] and have
noted the limitations of using alias analysis for a whole
program. We find that alias analysis is effective in the offload
accelerated path.

We changed the scope of alias analysis from offloaded
accelerated paths to the parent function before path extraction.
Then we observed the extra % of MAY Alias relations which
were added due to the set of memory operations which were
previously part of the offloaded region. These % MAY alias
relationships are new dependencies added between memory
operations which are selected for accelerated path extraction,
and memory operations which are part of the parent function
and not selected for accelerated paths.

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

Table II: Acceleration Region Characteristics

Cl [C2 [c3 C4 C5

Static Mem. Aliases %1.OC

App #OPs | #Mem || MLP |St-St St-Ld Ld-St| Access
gzip 64 4 4 p y 5 21
% | art 100 | 36 4 6 6 10 |0
Q | 18Imef | 29 D 2 ; i |5
& equake® | 559 215 16 . . 12 |2
crafty 72 7 8 : 3 q 40
parser 81 12 4 . : 2 34
bzip2 501 110 128 | 3 . 3 | 27
gee 47 2 2 3 4 i 26
429mef | 30 3 4 . . .| 24
2 | namd 527 100 16 6 6 30 | 41
8 | soplex 140 32 4 . : 8 | 19
E povray 223 74 32 4 21 24 95
@ | sjeng 99 11 8 . a ; 33
h26dref | 224 | 42 8 5 |27
Ibm 47 | 57 32 ; 12
sphinx3 | 133 20 32 0
blacks.” | 297 | 0 0 . g . |4
¢ | bodyr. | 285 | 42 4 30 30 42 | 10
S| dwts3. | 106 16 16 : : . 11
S | ferret. 185 0 2 . 29
S| fi2d3 | 314 | 80 4 48 | 18
2 | fluida. 229 | 28 8 . 14
& | freqmi. 109 32 4 8 17
£ | sar-back | 151 7 8 . . .| 64
sar-pfa. | 500 | 32 16 12 20 12|19
stream. 210 32 16 3 i 5 0:5
histog. 522 48 16 : 0

#MEM: Global memory operations that need disambiguation. #OP and
#MEM: Static counts in the dataflow graph. C4: # of memory dependen-
cies (Ld-St: Load-Store). C5: % of memory operations to scratchpad (
disambiguate perfectly), not part of # MEM.

For 12 out of 27 benchmarks, the % of MAY aliases
increased; 5 benchmarks had more than 10x increase in MAY
aliases. Bzip2, soplex and povray had maximum increase;
380x, 85x, and 100x.

NACHOS makes the key observation that hardware ac-
celerators restrict the window of execution anyway since
they statically schedule the instructions in the dataflow graph.
Hence we only need to apply alias analysis to path offloaded
to the accelerator (the DFG in Figure 3); the program paths
running on the OOO CPU continue to rely on an LSQ.
Memory fences in the offload path ensure ordering between
the CPU and accelerated paths; since the accelerated paths are
coarse enough (see #OPs in Table II) The fences constitute
minimal overhead. Coarse grain offload paths are created by
NEEDLE [18] (Step 1 in Figure 3 by forming superblock
(or trace) based on program profile. Offload path has no
control flow which helps eliminate complex control flow and
layers of indirection that often confound simple alias analysis
techniques. The effectiveness of alias analysis techniques
also depends on the specific algorithms and nature of the
workloads. We discuss the details of the impact of various
alias analysis in § V.

V. NACHOS-SW: Softare-only Memory
Disambiguation

We describe NACHOS-SW and analyze when hardware
assistance is needed. The input to NACHOS-SW is the

715

dataflow graph of the offload path and output is an augmented
dataflow graph which includes memory dependency edges
(MDEs) that need to be enforced. The output dataflow graph,
similar to prior work [8] is mapped to the function units of the
CGRA accelerator that enforces ordering explicitly, similar
to data dependencies. Figure 4 illustrates NACHOS-SW.

An age-ordered LSQ answers the following question: For
a memory operation X, which in-flight memory operations
overlap with X? and what is the program order with respect to
X. NACHOS-SW answers the question: Given two memory
operations X and Y do they alias (overlap) and what is
the program order amongst them. NACHOS-SW performs
the alias checks statically ahead-of-time and saves dynamic
energy. Compiler analysis help to determine which operations
on pointers may affect each other, these analyses provide a
foundation [2], [14], [39]. Here we leverage alias analysis to
enforce correct ordering for overlapping memory operations.
We study in detail the accuracy of the compiler alias analysis
and its impact on the performance and energy consumption
of the hardware accelerator. Compiler alias analysis can
emulate LSQ-based memory disambiguation by considering
all memory operations pairwise in the program region. While
this may seem daunting, it is performed on the static dataflow
graph and furthermore is restricted to the accelerated region
only; a memory fence orders the accelerator’s memory
operations with the CPU.

Dataflow with MDEs

Dataflow mapped to accelerator
5 /‘
’ V2R AN
/
'
7| N 5
VAP N4)

\FForwarding {M MAY {O Order

Figure 4: NACHOS-SW Memory Disambiguation.
NACHOS-SW labels memory operations pairs as NO,
MAY, and MUST. MUST labels require Forwarding or
Order edges; NACHOS-SW treats MAY labels as MUST.

For every pair of memory operations in the acceleration
region, the compiler assigns three types of labels: NO, MUST
and MAY alias. For the NO label, the compiler does not
add any MDE, allowing the memory operations to issue
in parallel (e.g., ST operation is allowed to proceed
in parallel). For MUST, NACHOS may introduce one of
two types of MDEs in the dataflow graph, ORDER(O) and
FORWARD(F). The order dataflow edges (O edges: 1bit)
are inserted between LD-ST and ST-ST memory operations
(e.g., 9 — @) that must alias. O edges are 1-bit ready
signals which ensure that operations to the same memory
location are executed in program order, i.e., the younger

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

operation waits for the older operation to complete. The
forward dataflow (F edges: 64bit value) is inserted between
ST-LD memory (e.g., —>@) operations that must alias and
forward values; essentially the memory dependency has been
transformed into a data dependency. For each LD operation,
we support forwarding from at most one ST. Since ST-LD
dependencies are uncommon (see Table II) we handle the
uncommon cases (e.g., partial overlap, LD depending on
multiple STs) by enforcing the memory dependence as an
ordering edge and stall the LD until the STs complete. Finally
for MAY (i.e., compiler unsure if operations alias), NACHOS-
SW conservatively treats it as MUST and enforces ordering.

A. Stage-wise refinement in NACHOS-SW

NACHOS-SW employs a stagewise approach to improve
accuracy and prune the MUST and MAY labels and con-
sequently the number of MDEs required for correctness
compared to baseline compiler. Figure 5 summarizes the four
stages of NACHOS analyses. The first stage modifies LLVM’s
alias analysis for memory disambiguation and assigns MUST,
MAY or NO alias label to each pair of memory operations in
the dataflow graph. The second stage uses inter-procedural
information to further resolve MAY labels to NO labels.
The third stage leverages existing data dependencies to
trim redundant MUST and MAY labels. Finally, stage four
employs polyhedral loop analysis [9] to detect independence
in multidimensional array accesses. Overall results:

Stage 1 proves no requirement for disambiguation for
seven workloads; of the remaining 20, on average 18%
of alias relations can be proved to be MUST or NO.
Stage 2 further converts 11% of MAY—NO alias re-
lations for 10 workloads. Of these, it is particularly
effective for five workloads; 22%—-80% converted.
Stage 3 removes 40%—-84% of redundant alias relations
which do not need to be enforced.

Stage 4 Polly is a loop and data-locality optimizer
framework that primarily targets multidimensional array
accesses. It resolved all the memory accesses accurately
in the acceleration region of 5 benchmarks.

Across all workloads, NACHOS-SW introduces memory
dependencies between ~ 25% of memory operation
pairs.

Dataflow

Dataflow
graph

Figure 5: Stage wise pruning and refinement of alias
relations into Memory Dependency Edges (MDEs). Refer
Figure 4 for MAY Edge (ﬂ) and MUST Edge (2> or
F

—)

716

B. Stage 1: LLVM Alias Analysis. Assigning MAY,
MUST and NO labels

NACHOS-SW analyzes memory operations pairwise and
assigns a label to each pair of memory operations. Even Stage-
1 in NACHOS-SW leverages all the advanced alias analysis in
LLVM, Basic (Stateless checks, Base/Const Pointers), Types
, Global variables, SCEV (pointer arithmetic and loops),
ScopedNoAlias (variable scope), and CFL (data structures
[45], [46]).

For each pair, three types of alias labels are possible
MUST, MAY, and NO. The MUST and NO, which result
from alias analysis provably identifies memory operations
that are either in the same location or not respectively. The
MUST label results in either an ORDER edge between ST-
ST and LD-ST pairs or a FORWARD edge between ST-
LD operations. Memory operation pairs with a NO alias
relationship can execute in parallel. However, because alias
analysis is undecidable, it can also give up and insert a MAY
alias relation (i.e., compiler unsure). In most workloads, 19
of 27, the dominant alias type is MAY. Stage 1 alias analyses
efficacy is limited in workloads where the accelerator regions
are composed of complex program paths; this is evidence for
the wide range of acceleration regions we study compared
to prior work that targeted loops [25].

%) HE MAY [MUST

= 100

o i

2

% 80

~

2 60

ﬁ

o 40

17}

§

5 20

&

e 0

S [T [[T (. = o
e P e L L
N Emmm-ﬁms '—‘ho""vﬂg "’a—:h--—c Q= o
o RV .mQ>.,,$-—'._‘o>=3®E.,.. T, ©

go'c*ogﬂ g}ﬁ%gwc\l ﬁﬂgv“ SoRad®q
S0 S < @94 FHEaoas

Figure 6: Stage 1: MAY and MUST alias relationships
between memory operation pairs. Top 5 accelerated
paths.

Figure 6 summarizes the results of Stage-1 for analyzing
the top five top five frequently executed accelerator regions.
Overall, 7 of 27 workloads need no further analysis. Some
benchmarks (see @ in Figure 6) have no stores among the
memory operations in these regions, i.e. gzip, mcf, crafty and
blackscholes. sjeng has store and load operations (2), however
alias relationships between all pairs are perfectly identified.
On the remaining workloads, the stage 1 can classify on
average 3% of pair wise checks as a MUST alias and 7% as
NO alias relations.

C. Stage 2: MAY —NO with inter-procedural analyses

Note that the standard alias analyses presently in LLVM 3.8
cannot reason across function boundaries. While investigating
the source code of our benchmarks, we observed that some

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

of the pointers corresponding to the MAY label were derived
from global or local variables whose addresses passed across
function boundaries. These could be resolved to NO label by
tracing the provenance of the pointers back across function
boundary to the source global or local variable. We perform
limited context sensitive analysis and the accelerator tend
to be invoked from a single call site. Our workloads do
not have function pointer invocation and it is tractable to
trace the provenance of pointers across the core-accelerator
boundary. This analysis takes as input the MAY alias relations
from stage-1 and attempts to trace the data-dependence of
the pointer back into the calling function to a source object.
When two memory operations trace back to different objects,
they are classified as NO.

_EEE MAY [MUST

[y
o
o

80

60

40

20

% PairWise Alias Relations

o

Figure 7: Stage 2 : Refinement of
1 to NO. Top 5 paths.

Figure 7 presents the results of stage 2 applied to the MAY
labels identified by stage 1. 10 workloads with MAY labels
were refined by stage 2 of NACHOS-SW analyses. Where
the inter-procedural analysis was effective, it converted 11%
of MAY alias relations to NO alias relations. In parser @ we
find that stage 1 introduces MAY alias relations as it cannot
reason about the equivalence of local pointers with a global
pointer variable — Table_connector x* table. Stage
2 is able to convert 29% of MAY labels to NO in parser.
Similarly, inter-procedural checks are particularly effective
in gce, sar-pfa-interpl, sar-backprojection and histogram. In
these workloads, 20%—-80% of MAY labels are converted to
NO.

D. Stage 3: Removing redundant MAY and MUST

NACHOS-SW makes the key observation that not all of the
alias relations identified by stage 1 and 2 need to be enforced
in the dataflow graph. A memory dependency is redundant
if a data dependencies already exist between the operations.
Often we find that there already exists an implicit transitive
data dependence between a pair of memory operations which
enforces the required ordering. Removing redundant orderings
is critical to NACHOS-SW as enforcing ORDER, FORWARD
or MAY MDE:s incur energy overhead. In figure 8 memory
operations and are identified as aliasing.
However the existing dataflow constraints (via @) implicitly

717

Stage 3
- Removing May/Must

@@

3

Data dependency
subsumes O
e.g., 1-3-5 enforces 1-5
Figure 8: Implicit data dependencies eliminate the need

to explicitly enforce ordering.

ensure that @ must complete before @ begins, there is no
reason for explicit memory ordering between them. Similarly,
@ must complete before @ can execute due to @ Stage-3
reduces the number of redundant ordering edges between
memory operations, thus reducing overheads while program
correctness is maintained.

In order to remove these redundant aliasing relations, stage-
3 performs a reachability analysis between two memory
operations in the dataflow graph. Since the accelerator
dataflow graphs are directed and acyclic this is tractable.
The offload region in the program is traversed in reverse
topological order (post order traversal of the dataflow graph).
For each alias relation check if the younger operation is
reachable from the older memory operation in the dataflow
graph. If it is reachable, then discard the alias relation as
there exists an implicit data dependence. We do not eliminate
St-Ld aliases even if they are redundant to ensure forwarding.
If it is not, retain the MDE identified by Stage-1 or Stage-2.
Additionally, all MUST alias relations are enforced prior to
MAY alias relations.

Figure 9 shows the fraction of alias relations retained after
simplification in stage 3 with respect to all alias relations
determined in stage 1. Overall, we find that stage 3 is able
to remove the need to enforce 68% of alias relations (MUST
and MAY). Each bar is divided into the MUST alias and MAY
alias relations which need to be enforced. The largest amount
of redundant relations was in fft-2d, 84%.

E. Stage 4: Polyhedral Analyses and Multidimensional
loops (MAY to NO)

Using standard alias analyses for 5 of the 27 workloads
failed to provide meaningful alias information to minimize
the addition of MDEs. Polly provided perfect information on
MAY aliases within the stencil pattern loops in 5 applications
and managed to successfully detect all the MAYs to be NO
alias. We manually inspected the source of the accelerator
region with the highest coverage to understand the reason
for poor aliasing information. We find that for each of these
workloads the standard alias analyses is confounded by multi-
dimensional indexing into arrays. We list the code locations
and the respective files: (equake, equake.c:1212), (lbm,
Ibm.c:175), (namd, ComputeNonbo.h:14), (bodytrack, Image-
Measure:108), (dwt53, dwt.c:179). The specific code example
in equake would be: w[col][0] += A[Anext][0]
[0]*v[1i][0] + A[Anext] [1][0]*v[i][1]....

We leverage Polly, an LLVM project which uses a
mathematical representation based on integer polyhedra to

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

analyze and optimize memory access patterns [9]. The model
is suitable for analysing the stencil based inner - loop patterns
observed in the workloads where standard alias analyses
fail. Polly disambiguated all memory operations in these
workloads.

HEm MAY [MUST

-
(=]
(=]

2]
(=)

[=2]
[=]

S
o

N
o

% PairWise Alias Relations

o

Figure 9: Stage 3 : Impact of simplification on alias
dependencies for top five accelerated paths. Top 5 paths.

VI. NACHOS-SW vs OPT-LSQ Performance

Observation 1: NACHOS-SW’s performance depends on
a number of independent memory operations and whether
the compiler is able to find them. In 6 applications we see
slowdown between 18%—100% ; runtime checks are needed

Observation 2: In some workloads, NACHOS-SW can
perform better than OPT-LSQ since it reduces the load-to-
use latency by issuing accesses out-of-order to the cache; 6
workloads 8%—62% improvement.

OPT-LSQ disambiguate all memory operations at runtime
through hardware checks and find as much MLP as available
in the execution window, whereas NACHOS-SW serializes
both MUST and MAY alias operations. However, with OPT-
LSQ, while memory operations can execute and complete
out-of-order they have to issue and allocate LSQ entries
in program order. The LSQs are on the critical path and
affects load-to-use latency (especially for cache hits). With
NACHOS-SW when the compiler is able to find independent
memory operations statically, they can issue in parallel.

Figure 10 shows the relationship between % of memory
operations and % of MAY relations. We observe that the
performance of NACHOS-SW depends on the ability of
the compiler to find large % of non-conflicting memory
operations (%NO and %MUST alias operations), and high
% of memory operations in the offload path. Workloads
which observe speedup or slowdown compared to OPT-LSQ
(Figure 11), have high % of memory operations.

Figure 11 plots the % slowdown of NACHOS-SW normal-
ized to OPT-LSQ. The Y axis is centered at 0; negative on
Y axis means NACHOS-SW was faster; we explain below
why. We found that for 21 out of 27 workloads,NACHOS-
SW had under 4% performance overhead compared to OPT-
LSQ.NACHOS-SW performed better than OPT-LSQ in 7
benchmarks. We illustrate with h264ref @; 17% of the

718

O %MEM 0O %MAY
60
O
50 Perf. Slowdown
—T T
40 o1t
30 iR &
1
(o]
20000 0. © oP
o 1
(o] (o]
10 OOO ! DD
of
%0 fuful ° o
oopoooooooooppooooob
— Sl Gt |
EREEPCREaCERESREEEARESRBESES
SEACOEGESOEELA SRS R LEQRPESR
SESSPaES . @85 BAERA H3zongh
2" 8 8 e ® a4 Ao Pag g

Figure 10: %MEM: % of memory operations. % MAY:
Memory Ops with MAY label. X axis benchmark order
based on %MAY (different from other plots in paper).

2
g =0 B s SIS
g 10 | N R
:glo @ .
2 5 Slowdown I all
s O/ Speedups |7 ‘U‘U T
N _5 : ;
'@ %
E-10 S § E O F
§—15 & 3 @ B
S 20
APHORENOHT X ODH N OoMBPTgg QU R
AREEE s aE i REEEEERdERERSEREES
o .gEhN .mn§.°¢~.Eo§s‘§®£EU.—9¢ma
S E08° 278878 SS8BEHETHGE S
ne < < BRs” “geegs

Figure 11: Performance of NACHOS-SW vs OPT-LSQ.
Positive Y: % Slowdown. Negative Y: % Speedup

total operations are independent memory operations (MLP:8,
42 memory operations, 264 operations) (see Table II) many
of which hit in the cache. Since the memory operations are
issued in program order, LSQ is on the critical load path and
increases load-to-use latency by two cycles; in NACHOS-SW
there is no extra penalty; similar effects can be observed in
equake (MLP:16, 215 memory operations, 559 operations)
and namd. bodytrack and dwt53 have 0% of MAY alias
relations, and have many MUST alias dependencies that the
LSQ dynamically tracks and imposes a penalty to track them,
while the NACHOS-SW statically identifies the dependencies
(serializes them) and does not expend any cycles in tracking
dependencies at runtime.

@ For 6 benchmarks NACHOS-SW was slower compared
to OPT-LSQ and varied from 18% to 100%. This is primarily
caused by the prevalence of MAY alias cases and the
number of memory operations in the critical path. In all
these workloads (bzip2, art, fft, povray, histogram, soplex,
sar-bac,sar-pfa and freqmine), the MAY edges serialize the
memory operations which may be independent, and the
performance is further affected by the presence of compute
operations or floating point operations in the critical path of
the dataflow accelerator. The compute operations dependent
on these memory operations could also get serialized due

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

to their parent memory operations being serialized. Povray’s
dataflow graph had a critical path of 95 operations, 42% of
which were floating point many which were serialized due
to 30 may aliases.

OPT-LSQ vs BASELINE COMPILER (Stagel + Stage3):
Observation 3: The baseline compiler without NACHOS-
SW improvements slows down significantly compared to
OPT-LSQ due to serialization of MAY alias relationships;
10 applications slowdown more than 10% (max: 4x). To
understand the challenges for existing accelerator work, we
studied the performance of the baseline LLVM compiler with
only stage 3 optimizations and removed the alias analysis
passes for Stage 2 and Stage 4 (Figure 12). In the absence
of Stage 2 (inter procedural analysis), slowdown increased
for three benchmarks namely, h264ref, sar-pfa-interpl, and
histogram. Similarly, in the absence of Polyhedral Analyses,
all five benchmarks (equake, namd,lbm, bodytrack, and
dwt53) performed poorly. Ibm (400 % slowdown) particularly
perform poorly because a lot of MDEs are added to the
dataflow graph which increases the critical path by 7.5x.
When a memory operation in the critical path misses in the
cache, the performance degrades accordingly (e.g., Bodytrack,
464.h264ref, and histogram).

» 100
Q
&8
580
S
<)
5 60| S < L1
A < o)
o
g a0
i
20
= i
N Ol m DI:\ VH 1 .
Gy £ 04 (i - O~
.E*Eoﬁé’m‘aoogﬁ%’g’oﬁﬁgfgogg.sﬁﬂsm
N Emmm.ﬁms M;mhpﬁg,&g’pt‘uﬁagg Q
o R0 aN P> S =AY Bl s i L 88
— Qe oogQonWO S gT HSFZHgL9
0d°RrT §TPa & BEoTETEOTBE g
-2 < o »99 H2?q

Figure 12: %Slowdown of Baseline Compiler (Stagel
+ Stage3) normalized to OPT-LSQ (Lower is better)

VII. NACHOS: Hardware-assisted Runtime
Disambiguation of MAY Aliases

NACHOS is hardware-assist for NACHOS-SW. The per-
formance of NACHOS-SW depends on the % of MAY labels
assigned by the compiler. Consider the dataflow graph in
Figure 13, the Store operation ST e conflicts with Load
operation LD @, and ST e does not conflict with LD @
However, the compiler is unsure of these relations (MAY
alias) and adds a MAY edge for these relations. NACHOS-
SW considers these MAY edges as MUST edge and serializes
them. The LD @ stalls for g and e which causes the
cloud of compute operations dependent on the LD @ to
stall as well, which could have started execution as soon as
ST e finished execution.

Unlike NACHOS-SW which simply treats a MAY edge
as a MUST edge, in NACHOS MAY edges disambiguate

719

at runtime by the hardware to find independent memory
operations. The operations ST e and ST e are checked
in a round-robin manner against the LD address, and the
corresponding bit is set in the Result register if there is no
conflict. In case there is a conflict, for example when ST o
and LD @ addresses are compared, the corresponding bit is
not set in the result. Once, the ST g has finished execution
it sets the corresponding bit in the Result to 1. Once, all bits
are set in the Result, the LD sends a request to the cache.
When the response is available at LD @, the state register
is set to zero, LD @ is marked as finished, and the cloud
of operations can start execution.

Dataflow

Function unit implementing ==?

Ready (1b) Address (64b)
24 2 4
5@ L
‘j ADDR Arbiter
=T

2 e Result -

s g ot &

&’ o | Load 5, Address § g
. o8

£ Younger |

MAY ops OPS

Figure 13: NACHOS hardware assist for runtime check-
ing MAY aliases.

Why decentralized checking ?: We look at the trade-offs
of centralized (LSQ) OPT-LSQ approach vs decentralized (
comparator ==?) NACHOS approach. LSQs implement a 1-N
CAM checks, where a single memory operation is compared
against all other addresses in the CAM. Here the MAY alias
relationships are pairwise, and it is possible to perform 1-1
check between two memory operations. For instance, consider
LD @ and ST o in the Figure 13.

NACHOS comparator 1-1 checks could be slower than
an LSQ if multiple parent operations are ready in the same
cycle (i.e address already calculated). For example, if ST
é and ST 9 are ready in the same cycle then the arbiter
will make sure that only one comparator (==?) check is
performed every cycle. Based on this delay at a level in the
dataflow graph, the forward-slice of operations dependent on
the memory operation will have to stall. This leads to domino
effect where delay at a few memory operations will lead to
delays accumulating at each level of the dataflow graph. Note,
in the previous example if ST e and ST e got ready in
different cycles then there would be no delay. Our simulator
does model the ==? arbitration latency in detail for NACHOS
and we optimistically assume a single cycle latency for OPT-
LSQ. While LSQs impose a fixed energy penalty per memory
operation, in NACHOS the energy overhead depends on the
number of MAY aliases. Theoretically, if the number of MAY
aliases are very high; the energy penalty of the ==? increases
(Figure 13) compared to an OPT-LSQ; we do not observe
this phenomenon in any of our workloads. See Appendix for
equations

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

Fan-In of MAY aliases: Figure 14 presents a breaks down
of fan-ins i.e the distribution of the number of parent
memory operations that have a MAY alias relation with
a memory operation. Overall, 9 workloads (e.g., gzip) have
only independent memory operations (i.e., no older parents
with a MAY alias relation); in 11 workloads (e.g., art), 50%
of the memory operations have less than 1 older memory
operation on which they may depend. A few workloads (e.g.,
bzip2, sar-pfa,fft-2d, soplex, povray, fft-2d) have memory
operations with high fan-ins. In both bzip2 and sar-pfa this
high fan-in increases the cycles spent in ==? (which includes
only one comparator) and affects performance (more details
in the next section).

100

80

60|

40

20

% Memory Operations

Figure 14: Breakdown of Older memory dependencies
that MAY alias with a memory operation.

VIII. NACHOS vs OPT-LSQ

A. Performance

Observation 1: For 19 benchmarks NACHOS was within
2.5% of OPT-LSQ. For six benchmarks performance improved
between 6%—70% due to better load-to-use latency.

NACHOS improves performance by verifying and paral-
lelizing MAY alias memory operations that NACHOS-SW
would have serialized. Figure 15 normalizes NACHOS’s per-
formance against OPT-LSQ. @ NACHOS performed better
than NACHOS-SW in 8 applications (464.h264ref, freqmine,
histogram, bodytrack, fft-2d, sar-pfa-interpl, 453.povray,
401.bzip2). In h264ref and bodytrack, NACHOS-SW out-
performed OPT-LSQ by minimizing the load-to-use penalty
of cache hits; NACHOS outperformed NACHOS-SW further
by 12%. @ In workloads with a large number of MAY
aliases (fft-2d, sar-pfa, povray and bzip2), NACHOS signifi-
cantly outperformed NACHOS-SW (21—46% performance
improvement); in both fft-2d and povray NACHOS achieves
performance similar to OPT-LSQ.

NACHOS cannot mine more MLP than an OPT-LSQ and it
primarily targets energy. For nineteen benchmarks it performs
within 2.5% of OPT-LSQ, and improves performance up to
70% for six benchmarks. @ In bzip2 and sar-pfa NACHOS
experienced an 8% slowdown relative to OPT-LSQ. The

720

slowdown is a result of the contention caused by fan-ins
(of MAY alias) from many older parents at a few memory
operations (see Section VII: Why decentralized checking?). In
particular, bzip2 had three memory operations that potentially
aliased with 50 older parents and with sar-pfa 43% of
memory operations had >2 MAY alias parents (see Figure
14). These workloads also have high MLP (bzip2:128 ops sar-
pfa: 16) and many memory operations fires simultaneously
increasing contention at the ==? site of the younger memory
operation. For 15 benchmarks the compiler is certain about
all the dependencies (i.e., no MAY aliases); both NACHOS
and NACHOS-SW achieves the same performance as OPT-
LSQ (Figure 10 e.g., gzip). Finally, NACHOS improve over
NACHOS-SW by detecting many more opportunities for
ST-LD forwarding (bodytrack).

O NACHOS-SW [NACHOS

8100
5 80
§ 60/Slowdown o o}
‘g 40} : . ; ik
£ 20 @ %
2 0 0600 o Haoe Q o o0 o o= (PN
: B <o V@@VV zyu A L)
£-20/ | ®)
2—40-819e p
< —60 : o o
QPH ORENOHTO X DY gmOoomMETaegQoOR
T TP e PP T e FEELET
o REESCLH .mn§.®¢~.50§a‘§ba9 RN B
SBE8S 9FgRPe SaBEEHEFL G0
Se g = &R HEwegs

Figure 15: Performance: NACHOS vs OPT-LSQ. Marker
indicates performance of NACHOS-SW.

B. Energy Efficiency

Observation 1: NACHOS requires only 6% of total energy for
memory ordering; for 15 workloads it imposes no overhead.
OPT-LSQ requires 27% of total energy (includes the LI
cache). leftmargin=*

« eliminating LSQ checks when MUST relations should be
enforced and enforcing them using a pairwise ordering
edge. NACHOS uses an ORDER edge (single bit) instead
of hardware disambiguation.
eliminating LSQ checks when NO aliasing exists and
compiler proves memory operations can be run in
parallel.
finally, decomposing runtime disambiguation of MAY
alias memory operations into pairwise checks instead of
I-to-many LSQ CAM checks.

Figure 16 the shows fraction of MDEs require by NA-
CHOS’s compared to the baseline compiler (see § VI
:Baseline) in the selected acceleration region. The number on
each bar represents absolute number of MDEs in work which
correlates to the fraction of energy expended in NACHOS
Figure 17.

In the workloads where MDEs were introduced, between
7-296 additional edges were added. This adds to MDE

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

B MAY [MUST ~
1.0 i
» g
00.8 -
5
< 0.6
Z
5 0.4
(4] ©
Q02| m
il |
O 8 e
R agda 3
5°E8E Ay
Hg—«‘a ©.Q
Bo =

Figure 16: NACHOS vs Baseline compiler (Stage 1 and
3 only). Relative times of MDEs enforced (i.e., MAY +
MUST); lower the better. Number on bar: # MDEs in
NACHOS.

energy cost (Figure 17) i.e, comparator checks for MAY
alias relations and serializing cost for MUST alias relations.
Three workloads, povray, bzip2 and fft-2d required more than
250 MDEs which have the maximum % MDE energy cost
in NACHOS. However, for fft-2d and povray, this represents
enforcing less than 20% of MDEs by the baseline compiler.
Overall, on an average 54 MDEs were added to workloads.

Figure 17 shows the energy breakdown of the NACHOS
architecture. Cache energy is same for NACHOS and OPT-
LSQ (see Figure 18). With NACHOS, the accelerator is 21%
(12-40%) more energy efficient than OPT-LSQ. We elaborate:

[COMPUTE B MDEsin NACHOS [] L1
O=OANFNNROMMNMUODNONOYE—~OANOONTEM
g L
g 80 |-yt M — e e s
8 !
60
2 L L (| |
o =
~ — -
< I WD
5 20
a
4]
Ogt’“«m HNOGTO X DY gmosmBoggodOl
SHHOYPO 0 gvma @ HLDQ-’N:U""(U“"EU)
N ® gg m,._.caﬁa-—q.‘ ‘-‘.-QE&H PLg 88 g
S} O LR eSS .Ox= > g NG
25 d i HoBmo CooslEEoLybh
SECR° 2FERY] BE8TE I omd i
= o < o «Rl9 HE o ogs

Figure 17: Reduction in NACHOS Energy vs OPT-LSQ.

Number on bar: % memory operations.
sjeng (Efficacy of Stage 1). Related : gzip, mcf, crafty, mcf,
and fft-2d. sjeng has 99 operations (11 memory operations) in
the accelerated region. Of the 11 memory operations, only a
single operation is a store. The stage 1 of NACHOS analyses
is able to reason about the memory location of the store
operation and deduce no alias relationships for all pairs of
memory operations. NACHOS reduces energy consumption
by 54.5% by enforcing exactly the dependencies which need
to be enforced. Figure 6 shows the same trend true for not
just the most frequently executed region, but also for the top

721

five most frequently executed regions.

fluidanimate (Efficacy of Stage 2). Related: gcc, parser,
h264ref, sar-backprojection, sar-pfa-interp1, and freqmine. We
find a 26% reduction in energy as no MDEs are added to the
dataflow graph for the most frequently executed region; 28 of
229 operations are memory operations. Stage 2 of NACHOS
is able to reason about the objects in the parent context of
the specialized region using inter-procedural alias analysis
checks. An examination of the source serial.cpp:40
shows the usage of global variables which are involved in
pointer checks.

histogram (Efficacy of Stage 3) : Related : vpr and
povray. In Stage 3 of NACHOS-SW, MAY edges need not
be enforced due to the existing data dependence relationships
in the dataflow graph, which reduces the number of dynamic
checks required. This simplification pass removes 1293 of
1404 (93%) potential MDEs in the accelerated region across
all workloads and adds an extra 22% MDE:s to the original
dataflow graph.

equake (Efficacy of Stage 4) : Related : 1bm, namd, body-
track and dwt53. Stage 4 provides perfect alias information
for five benchmarks and thus does not incur any MDE energy
cost.

C. OPT-LSQ: Baseline LSQ for accelerators

The OPT-LSQ is the baseline for all the performance and
energy plots. The OPT-LSQ is an address partitioned [34]
LSQ that minimizes energy penalty per LSQ check; it
also includes a bloom filter [32]. Other optimizations were
primarily designed for OOOs (e.g., [3], [26], [32], [35], [36],
[41] and require complex prediction structures. See Figure 3
for OPT-LSQ parameters and access costs.

Challenge 1: Energy of OPT-LSQ

For an optimized LSQ design (i.e., Partitioned + Bloom
filter), LSQs consumes 27% of total energy (including cache).

Figure 18 presents the energy breakdown of a CGRA
accelerator with an LSQ. All accesses check the bloom filter;
hits in bloom filter have to check the LSQ while misses
do not. Nine benchmarks have perfect bloom filter behavior
i.e., 0 hits and no CAM checks. Note that the bloom filter
is strictly a best-effort energy optimization; a large LSQ is
needed to handle all the in-flight memory operations. For
5 benchmarks (e.g., fft-2d), OPT-LSQ suffered in energy
due to high % of bloom hits (20%-+, see table in Figure 18)
. In case of high bloom hits, the memory operations will
have a higher penalty for OPT-LSQ compared to an LSQ
without any bloom filter. For these benchmarks, the % of
store operations are also high (25% to 50%) and they cause
many bloom filter hits. The OPT-LSQ also expends high
energy when forwarding values from stores to loads (e.g.,
bodytrack).

Challenge 2: Scaling with MLP and # Memory oper-
ations: LSQs occupy a large amount of area relative to
Sfunction units on the accelerator; a 48-entry LSQ occupies ap-
proximately the same area as 128 integer ALUs. Provisioning

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

I COMPUTE I 1SQ-BLOOM [0 LSQ-CAM [L1

Q‘NNMHMNM

N

™

—

1

2

100 ™M~ NN n — —
g
o 80
a L
T 60 i I
il N
m
B
3
£ 20
X
0
QEBOPRPRNOFET X >DEagmoomPogg0cOon
LR RN PR
SB588 ofgewl EEC58E5E g
S g "8 2 B8 HE e 03
Bloom Mean | Workloads
Hits(%)
0 0 | gzip, mcf, crafty, gcc, mef, Ibm, sphinx3, fluidan-
imate, streamcluster
0-10 2.5 | art, bzip2, soplex, sjeng, h264ref
10 - 20 12.6 | equake, parser, namd, povray, dwt53, sar-
backprojection
20+ 28 | bodytrack, fft-2d, freqmine, sar-pfa-interpl, his-
togram

Figure 18: OPT-LSQ Dynamic Energy. Number on bar:
% memory operations.

an LSQ for an accelerator takes away from valuable function
unit resources. Determining size and ports is challenging
since acceleration regions across our workloads tend to have
varied memory behavior, both in the number of memory
operations and MLP (see Table II). The number of entries in
the LSQ predetermines MLP and dataflow partitioning [34],
and the number of CAM ports determines overall instruction
throughput. Overall, we find that 11 workloads have up to
20 memory operations but 6 workloads have 50+ memory
operations. The MLP can also vary significantly (Table I1:C3);
16 apps MLP<8 and 4 apps MLP>32 operations). Table II
shows the number of memory operations in the acceleration
region; can range from zero (ferret) to 215 (183.equake). This
makes it challenging to find an optimal LSQ configuration
for all workloads.

IX. Conclusion

We comprehensively investigate compiler-driven mem-
ory disambiguation for hardware accelerators. We will be
releasing NACHOS-SW an LLVM based compiler that
incorporates recent improvements in alias analysis, inter-
procedural analysis and our own optimizations (redundancy
remover) for minimizing compiler uncertainty. We propose
NACHOS as a pay-as-you-go approach where the compiler
filters out memory operations that need no checking, and the
hardware dynamically checks (when necessary) to find MLP.
NACHOS achieves performance comparable to the optimized
LSQ and saves 21% energy compared to an optimized LSQ.

Appendix: Limits of decentralized checking

To understand the trade-offs between LSQ checks and
NACHOS checks, we use a simple mathematical model.

722

Consider, there are N memory operations and Ej, is the
joules per LSQ check. The total energy required for LSQ
: TOTyyy = N X Ejgq. NACHOS enforces checks pairwise
between memory operations; the total number of possible (’;’)
pairwise memory aliases can be classified into NO, MUST,
and MAY.

T OTyachos = Pairsyo X Eno + Pairsyyst X Eyust

+ PairsMAy X EMAy
N

2))

Eno is ~ 0 since no runtime operations are required
for handling independent memory operations. Furthermore,
Eyuysr << Eyay since MUST edges require a single bit
for ordering; while MAY edges need to pass entire ad-
dress (and possibly value). Also workloads rarely have
true memory dependencies; hence Pairsyyst << N . The
first two terms thus ~ 0. The expression simplifies to
T OTyachos = Pairsyay X Epay -

TOTnachos _

where Pairsyo + Pairsyyst + Pairsyay = <

PairsMAy X EMAy PairsMAy EMAy

2
TOT[sq N X Elsq N E/A‘!]
E 50017 : .
Overall, fen—savings = géy = 3000ff 7 is ratio of energy savings

for a single MAY alias in NACHOS compared to a 1-to-N
CAM check in 1sq; we have conservatively assumed a single
MAY alias comparator to be 500f] and the optimized LSQ
to be 3000f] (only a 6x difference). Decentralized checking
is profitable if the avg. number of may aliases per memory
operation (P‘"rli,M) is less than T WW(6 here). Only in

seven benchmarks is the (Z4Zsmar "irli',"”"y) 1 (i.e., bzip2, soplex,
povray, fft, freqmine, sar, and histogram). The energy for
MDEs in NACHOS as a fraction of total energy is higher in
these workloads (see Figure 17); but certainly less than the
OPT-LSQ since 25mar < 6,

References

[1] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W.-
m. W. Hwu, “Integrated predicated and speculative execution
in the IMPACT EPIC architecture,” in ISCA, 1998.

D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of
pointers and structures,” in PLDI, 1990.

G. Z. Chrysos and J. S. Emer, “Memory dependence prediction
using store sets,” in ISCA, 1998.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-specific processing on a general-purpose core via
transparent instruction set customization,” in MICRO, 2004.
A. S. U. Compiler Microarchitecture Lab, “Gem5 for
software managed reconfigurable accelerator (smra).” [Online].
Available: https://github.com/cmlasu/cml-cgra

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal,
and W. mei W. Hwu, “Dynamic memory disambiguation using
the memory conflict buffer,” in ASPLOS, 1994.

V. Govindaraju, “Dyser: Dynamically specialized datapaths
for energy efficient computing.” [Online]. Available: http:
/lresearch.cs.wisc.edu/vertical/dyser-compiler/

V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynami-
cally specialized datapaths for energy efficient computing,” in

(2]
(3]
[4

—_

(5]

[6

—_

[7

—

(8

—_—

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

HPCA, 2011.

T. Grosser, A. Groesslinger, and C. Lengauer, “Polly - per-
forming polyhedral optimizations on a low-level intermediate
representation.”

S. Gupta, S. Feng, A. Ansari, S. A. Mahlke, and D. I. August,
“Bundled execution of recurring traces for energy-efficient
general purpose processing,” in MICRO, 2011.

T. J. Ham, J. L. Aragn, and M. Martonosi, “DeSC: decoupled
supply-compute communication management for heteroge-
neous architectures.” in MICRO, 2015.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network.” in ISCA, 2016.

M. Hayenga, V. R. K. Naresh, and M. H. Lipasti, “Revolver:
Processor architecture for power efficient loop execution,” in
HPCA, 2014.

M. Hind, “Pointer analysis: haven’t we solved this problem
yet?” in PASTE, 2001.

C.-H. Ho, S. J. Kim, and K. Sankaralingam, “Efficient execu-
tion of memory access phases using dataflow specialization.”
in ISCA, 2015.

E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core
fusion: accommodating software diversity in chip multiproces-
sors,” in ISCA, 2007.

H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim,
and T. Pho, “Macsim: A cpu-gpu heterogeneous simulation
framework user guide.”

S. Kumar, N. Sumner, S. Magrem, V. Srinivasam, , and
A. Shriraman, “Needle : Leveraging program analysis to
analyze and extract accelerators from whole programs,” in
HPCA, 2017.

S. Kumar, N. Sumner, and A. Shriraman, “Spec-ax and parsec-
ax: Extracting accelerator benchmarks from microprocessor
benchmarks,” in IISWC, 2016.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in MICRO, 2009.

J. Q. Lin, T. Chen, W.-C. Hsu, and P.-C. Yew, “Speculative
register promotion using advanced load address table (alat),”
in CGO, 2003.

D. Lustig, M. Pellaver, and M. Martonosi, “Pipe check:
Specifying and verifying microarchitectural enforcement of
memory consistency models,” in MICRO, 2014.

D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh, “TABLA: A unified template-
based framework for accelerating statistical machine learning.”
in HPCA, 2016.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset,” SIGARCH Computer Architecture
News, 2005.

M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani,
S. C. Goldstein, and M. Budiu, “Tartan: evaluating spatial
computation for whole program execution,” in ASPLOS, 2006.
A. Moshovos and G. S. Sohi, “Speculative Memory Cloaking
and Bypassing.” International Journal of Parallel Program-
ming, 1999.

T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring
the potential of heterogeneous von neumann/dataflow execution
models,” ISCA, 2015.

S. Padmanabha, A. Lukefahr, R. Das, and S. A. Mahlke,
“Trace based phase prediction for tightly-coupled heterogeneous
cores.” in MICRO, 2013.

H. Park, Y. Park, and S. Mahlke, ‘“Polymorphic pipeline array:

723

[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

a flexible multicore accelerator with virtualized execution for
mobile multimedia applications,” in MICRO, 2009.

M. A. Pericas, A. Cristal, F. J. Cazorla, R. Gonzilez, A. V.
Veidenbaum, D. A. Jiménez, and M. Valero, “A two-level
load/store queue based on execution locality,” ISCA, 2008.
M. Seth and S. C. Goldstein, “Optimizing memory accesses
for spatial computation,” in CGO, 2003.

S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and
S. W. Keckler, “Scalable Hardware Memory Disambiguation
for High ILP Processors,” in MICRO, 2003.

S. Sethumadhavan, R. G. McDonald, R. Desikan, D. Burger,
and S. W. Keckler, “Design and implementation of the trips
primary memory system,” 2006 International Conference on
Computer Design, 2006.

S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, and
S. W. Keckler, “Late-binding: enabling unordered load-store
queues,” in ISCA, 2007.

T. Sha, M. M. K. Martin, and A. Roth, “Scalable Store-Load
Forwarding via Store Queue Index Prediction,” in MICRO,
2005.

T. Sha, M. M. Martin, and A. Roth, “Nosq: Store-load
communication without a store queue,” in MICRO, 2006.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. M. Brooks, “Aladdin:
A pre-RTL, power-performance accelerator simulator enabling
large design space exploration of customized architectures.”
in ISCA, 2014.

A. Sharifian, S. Kumar, A. Guha, and A. Shriraman, “Chainsaw:
Von-neumann accelerators to leverage fused instruction chains,”
in MICRO, 2016.

Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found.
Trends Program. Lang., 2015.

A. Smith, J. Gibson, B. A. Maher, N. Nethercote, B. Yoder,
D. Burger, K. S. McKinley, and J. H. Burrill, “Compiling for
EDGE Architectures.” CGO, 2006.

S. Subramaniam and G. H. Loh, “Fire-and-Forget: Load/Store
Scheduling with No Store Queue at All,” in MICRO, 2006.
K. Tran, T. E. Carlson, K. Koukos, M. Sjilander, V. Spiliopou-
los, S. Kaxiras, and A. Jimborean, “Clairvoyance: look-ahead
compile-time scheduling,” in CGO, 2017.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
cores: reducing the energy of mature computations,” in
ASPLOS, 2010.

L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navi-
gating big data with high-throughput, energy-efficient data
partitioning,” in ISCA, 2013.

Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su, “Fast algorithms
for dyck-cfl-reachability with applications to alias analysis,”
in PLDI, 2013.

X. Zheng and R. Rugina, “Demand-driven alias analysis for
¢,” in POPL, 2008.

Authorized licensed use limited to: GOOGLE. Downloaded on April 11,2023 at 04:29:17 UTC from IEEE Xplore. Restrictions apply.

