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Abstract—Hardware accelerators have relied on the compiler
to extract instruction parallelism but may waste significant
energy in enforcing memory ordering and discovering memory
parallelism. Accelerators tend to either serialize memory oper-
ations [43] or reuse power hungry load-store queues (LSQs) [8],
[27]. Recent works [11], [15] use the compiler for scheduling
but continue to rely on LSQs for memory disambiguation.

NACHOS is a hardware assisted software-driven approach
to memory disambiguation for accelerators. In NACHOS, the
compiler classifies pairs of memory operations as NO alias (i.e.,
independent memory operations), MUST alias (i.e., ordering
required), or MAY alias (i.e., compiler uncertain). We developed
a compiler-only approach called NACHOS-SW that serializes
memory operations both when the compiler is certain (MUST
alias) and uncertain (MAY alias). Our study analyzes multiple
stages of alias analysis on 135 acceleration regions extracted
from SPEC2K, SPEC2k6, and PARSEC. NACHOS-SW is en-
ergy efficient, but serialization limits performance; 18%–100%
slowdown compared to an optimized LSQ. We then proposed
NACHOS a low-overhead, scalable, hardware comparator assist
that dynamically verifies MAY alias and executes independent
memory operations in parallel. NACHOS is a pay-as-you-go
approach where the compiler filters out memory operations to
save dynamic energy, and the hardware dynamically checks
to find MLP. NACHOS achieves performance comparable to
an optimized LSQ; in fact, it improved performance in 6
benchmarks(6%—70%) by reducing load-to-use latency for
cache hits. NACHOS imposes no energy overhead in 15 out of
27 benchmarks i.e., compiler accurately determines all memory
dependencies; the average energy overhead is �6% of total
(accelerator and L1 cache); in comparison, an optimized LSQ
consumes 27% of total energy. NACHOS is released as free
and open source software. Github: https://github.com/sfu-arch/
nachos

Keywords-Hardware accelerators; Dataflow; Memory disam-
biguation; Load-Store Queues; Alias Analysis;

I. Introduction

Out-of-order(OOO) execution enables high performance by

executing many instructions in parallel. Memory disambigua-

tion is required to enforce program order between operations

accessing the same memory location (for correctness) while

executing those that access different locations in parallel (for

performance). Accelerators execute instructions out-of-order

as well (typically with a dataflow architecture) and need

memory disambiguation support as well.

Often hardware accelerators target regular algorithms where

memory dependencies are resolved early on at hardware

design time, and the dataflow is carefully orchestrated [23],

[44]. Spatial accelerators that tend to target a broad range

of program behavior (e.g., CGRAs [29], Dyser [8]) rely

on the compiler to find instruction level parallelism. Still

they continue to rely on the OOO’s Load-Store-Queue

(LSQ) to enforce memory ordering and are integrated into

OOO’s pipeline; this limits the number of operations in

the accelerated region. Some accelerators constrain the

accelerated region (e.g., basic blocks [43] and compound

function units [10]), to only have a single memory operation

further limiting granularity. Recent work has also shown

that significant energy efficiency can be gained from rec-

ognizing nearby store-load dependencies and localizing the

communication [11], [12]. Memory disambiguation influences

multiple parameters in accelerators including performance,

energy, design effort and integration with the processor.
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[39,40,21]
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Figure 1: Optimized LSQ designs vs NACHOS. Arrows

indicate the parameters that are targeted and improved.

The most prevalent approach amongst accelerators [8],

[27], [28] that require memory disambiguation is to reuse the

OOO’s LSQ. While some rely on the compiler to optimize

the memory access patterns [11], [15] they continue to use a

separate energy inefficient LSQ. Figure 1 highlights the trade-

offs in LSQs in a hardware accelerator context. In a Coarse

Grain Reconfigurable Array (CGRA) based accelerator, we

find that the LSQ dominates overall energy consumption

(since other overheads are minimal); even an optimized

LSQ (OPT-LSQ) that is partitioned and filters power-hungry

Content Addressable Memory (CAM) accesses [30], [32],

[34]–[36], [41] accounts for 27% of total energy. It is

also unclear if the LSQ (ports and size) can be scaled to

match the memory parallelism available in the acceleration

region without additional hardware [16], [33]. Section VIII-C

includes details on the baseline OPT-LSQ we evaluate.

Our Approach: We propose NACHOS, software-driven

hardware-assisted memory disambiguation for hardware accel-
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erators. NACHOS uses an LLVM-based prototype compiler

which determines the aliasing relationship between all pairs

of memory operations in the accelerated region. The pairwise

relations are labeled as MAY, MUST or NO alias to indicate

whether a pair of memory operations may, will or never

access the same memory location. NACHOS enforces memory

ordering between operations pairwise, unlike an LSQ’s

centralized approach. NACHOS handles dependent (MUST

alias) memory operations, similar to the data dependencies

in a dataflow graph. Memory operations which do not alias

(NO alias) proceed in parallel. However, often the compiler

lacks enough information to classify a pairwise relation as

MUST or NO alias. One conservative approach employed in

prior work [25], [31] is to treat MAY aliases as MUST alias.

Younger memory operations are stalled to ensure correctness

as the compiler is unable to determine whether they access

the same memory location. However, pathological scenarios

may arise where a single ambiguous memory operation may

serialize potential parallelism. NACHOS deploys hardware

checks to dynamically compare the addresses of MAY

alias memory operation pairs. Based on the check the

hardware either enforces the ordering if required or allows the

operations to proceed in parallel. We also discuss NACHOS-

SW, a software-only approach (similar to Tartan [25]) that

enforces all dependencies both when the compiler is certain

(MUST aliases) and uncertain (MAY aliases); this helps study

the limit of a software-only approach.

As far as we are aware, we are the first to comprehensively

quantify the energy and performance impact of using alias

analysis to enforce memory ordering for hardware accelera-

tors. Seminal works in application specialization (e.g., [4],

[25], [43]) mention the use of alias analysis. However, they

neither discuss qualitatively nor evaluate quantitatively the

impact of using compiler based alias analysis to enforce

correct memory ordering. Other non-accelerator works have

leveraged alias analysis for optimally scheduling memory

operations (e.g., [1], [11], [42]) but continue to rely on LSQ-

like structures for correctness. Our contributions:

• We will release NACHOS-SW, an LLVM-based com-

piler that leverages alias analysis for memory dis-

ambiguation in hardware accelerators. NACHOS-SW

adds support for inter-procedural analysis, polyhedral

analysis [9], and optimizations for removing redundant

alias checks (see § V).

• We study 135 accelerated regions (across 27 benchmarks)

with four stages of alias analysis and find that while

a software-only approach (NACHOS-SW) improves

energy efficiency over an LSQ, compiler ambiguity

excessively serializes operations. Six applications; 18%—

100% slowdown (see § VI).

• We propose NACHOS, a decentralized hardware assist

that dynamically disambiguates accesses to extract mem-

ory parallelism (see § VII). NACHOS’s performance is

comparable to an optimized LSQ (OPT-LSQ). In six

workloads performance improves (6%—70%) due to

improved load-to-use latency for cache hits. NACHOS

saves 21% energy compared to OPT-LSQ (see § VIII).

II. Scope and Related Work

Here we contrast the centralized approach adopted by

conventional LSQs to a distributed approach proposed by

NACHOS. We also discuss current accelerator designs and

how they can benefit from NACHOS (§ II-B).

A. Memory ordering with LSQs and NACHOS

Memory disambiguation helps enforce the ordering be-

tween memory operations which access the same location

from a single thread in a program. The following orderings

are enforced (see Figure 2:example): i) ST-ST ordering: in-

order retirement of stores to the same address to ensure the

final value in a location ( 3 → 5 ) , ii) ST-LD ordering, to

forward in-flight values from older stores to younger loads

( 3 → 4 ), and iii) LD-ST ordering, to ensure that stores

do not overwrite the values of older loads ( 4 → 5 ); LD-LD

ordering is only required in parallel racy programs.

Figure 2 illustrates the LSQ; a content-addressable queue

each for load and store operations. LSQs logically order

entries based on their age (either by physically ordering

entries based on age or by explicitly encoding the age). Every
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Figure 2: LSQ vs NACHOS-SW and NACHOS. Arrow between operations indicate memory dependency edges

(MDEs).
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in-flight memory operation has to perform an expensive 1-N

search against every other memory operations to identify

potential matches. Loads (© in the figure) check for older

stores in the Store Queue (SQ) and matched stores forward

their values. Stores check (•) for matches in both queues

to detect potential ordering violations. A challenge unique

to dataflow based architectures [34] is that they lack a

front-end and the LSQs have to rely on a compiler to

explicitly indicate the age. This can lead to over-provisioning

of the LSQ [40] and increased occupancy [13]; here we

observe a noticeable performance impact due to inorder issue

of memory operations (see § VI) Another challenge with

incorporating LSQ-based approaches is scaling up and down

with the number of memory operations and memory level

parallelism (MLP) in the accelerated region. In the accelerated

region, memory operations can vary a lot, from 0–38% and

MLP between 2—128 (see Table II). This impacts energy

and area; Section VIII-C includes details on the baseline.

NACHOS-SW is a software-only approach (see Figure 2).

The compiler analyzes pairwise relations between memory

operations and assigns a label for every pair: NO alias, MUST

alias (operations need to be ordered), or MAY alias (the

compiler is uncertain). In the example shown, NACHOS-SW

identified that i) 3 → 4 alias with each other, ii) 2 does

not alias with [3,4,5], iii) 1 may alias with [2,3,4,5], and iv)

6 does not alias at all. The compiler inserts no dependence

edge into 6 ;, it can execute concurrently with all operations.

To enforce ordering between the MUST alias operations

(3,4,5) and MAY alias operation (1), the compiler inserts

a dataflow ordering edge between the memory operations.

These edges are enforced by the accelerator (similar to a data

dependence). Since NACHOS-SW has no runtime information

it conservatively enforces ordering from 1 which increases

the critical path. For instance, if 1 misses in the cache other

operations and their forward slices are stalled limiting overall

performance. NACHOS-SW is orthogonal to pipecheck [22]

which verifies whether a microarchitecture graph (specifying

the CPU’s hardware) preserves the program order for a

particular litmus test.

NACHOS adds a hardware assist to check the memory

operations when the compiler is uncertain (i.e., MAY alias).

Unlike NACHOS-SW which serializes memory operations

when the compiler is uncertain, NACHOS can accommodate

varying degrees of MLP and number of memory operations.

To handle compiler may alias operations (21% of all pairwise

memory operation checks), NACHOS sets up a may alias

enforcement edge ( 1
==?..
−→ to 2 , 3 ). An additional

hardware comparator implemented within the dataflow accel-

erator dynamically checks the addresses whether they alias.

If they do not alias then both 2 and 3 are permitted

to proceed in parallel with 1 increasing MLP. NACHOS

implements the address comparison at the site of the younger

memory operation i.e., 2 and 3 , decentralized and in

parallel. In NACHOS, the compiler based alias analysis is

used to minimize the number of hardware checks needed. For

instance, 1 does not have any (==?) to 4 , 5 since the

compiler knows that 1, 4 and 5 already must alias. Overall,

NACHOS is pay-as-you-go approach and employs dynamic

checks only when the software is uncertain, and even then

enforces only the least number of pair-wise checks required

to find all the MLP.

B. How does NACHOS benefit accelerators?

Table I discusses the trade-offs in how different accelerator

types handle memory accesses. Prior approaches can be

broadly classified into four designs: i) compute-only accel-

erators, ii) compound function units with minimal memory

operations (typically 1) iii) access accelerators that leverage

regular kernel behavior and data parallelism and iv) whole

program accelerators that target arbitrary regions.

Compute-only accelerators depend on the OOO core to

perform memory accesses and thus require frequent interac-

tions with the processor. Achieving high energy efficiency

is challenging in workloads with more memory operations.

Compound function unit (CFU) based accelerators combine

frequently used operations but often terminate CFUs at a

memory operation, limiting acceleration granularity. Memory

Compute-Only Compound Unit Access Accelerator Program Accelerator

Dyser [8] CFU [4], [10],C-Core [43] MAD [15],DESC [11] Tartan [25],SEED [27]

Target

Scope Hyperblocks��3© Kernels Program

Granularity 10s of ops��3© 10s of ops 100s of ops Nested loops

Design

Mem. Ops? None; 1-per block��1© Regular: multiple ops. Irregular: Depends.��1©
Mem. Ordering OOO Inorder Large LSQ��4© Serialize and LSQ [27]

MLP Limited High Depends

Integration Close to OOO Uncore L1-cache

⇔OOO High��2© Medium (on block termination)��2© N/A

Compiler support N/A Targeted use. CFU design [10], Parallelizing NO alias loads [11], [25]

Benefits of NACHOS for each accelerator type

Find MLP 1© � � �Irregular program regions

Energy Efficiency 2© �Decouple from OOO �Decouple from LSQ

Coarse Offload. 3© �Multiple mem-ops, Increase Accel. granularity �Irregular programs

Low HW overhead. 4© �. Accelerators only need ability to enforce dependencies explicitly.

Table I: Comparison of how accelerators handle memory accesses. Also lists the specific benefits of NACHOS for each

accelerator.
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ordering demands that the compound operations execute in

order which also limits performance. As observed by prior

work [27], such designs continue to rely on an OOO for

achieving performance. Access accelerators largely focus on

optimizing the schedule and continue to use a conventional

LSQ for memory ordering. These techniques focus on regular

data loops and kernels, and high MLP requires large multi-

ported LSQs (DESC [11, Section 3.3]: 128 entries, MAD [15,

Section 5.4]: 4 ported LSQs). Perhaps the most closely related

work to ours is accelerators that target whole programs and do

not rely on the OOO core for memory accesses and memory

ordering. Such accelerators have primarily been demonstrated

on loop-dominated workloads [25] and in the presence of

irregular memory accesses (e.g., linked lists) tend to serialize

execution or require LSQs [27]. Prior work has neither

qualitatively nor quantitatively studied the influence of alias

analysis on performance and energy efficiency of hardware

accelerators. VLIW processors [1], [6], [21] and few recent

works [11], [42] have leveraged alias analysis for scheduling

independent operations. If the operations are not independent

(or compiler is unsure), they either serialize (performance

suffers) or continue to rely on LSQ-like associative structures.

NACHOS is suited for architectures that implement the

dataflow graph and enforces data dependencies explicitly,

either with custom netlist [37], [43] or as a spatial fabric,

e.g., CGRA [8]. The dataflow-based accelerators are a natural

fit for the compiler-based memory ordering since they already

enforce data dependencies explicitly between operations. See

§VII for how we overload existing dataflow architecture

mechanisms. NACHOS benefits other accelerators in the

following manner i) Extracting MLP: NACHOS finds all

the MLP available, either with the compiler analysis or by

hardware runtime checks (where the compiler is uncertain), ii)

Energy efficiency: NACHOS leverages the compiler to filter

away many of the hardware checks and even when checking

employs decentralized checks (in-lieu of the LSQ’s central-

ized approach) iii) Decoupling from OOO: NACHOS permits

greater flexibility by effectively handling memory ordering.

Compute-only accelerators and CFU accelerators can include

multiple memory operations and increase their granularity.

Access accelerators and whole program accelerators can

effectively deal with irregular programs since NACHOS can

extract MLP with a combined hardware-software approach.

iv) Low hardware overhead: NACHOS relies on existing

logic in dataflow architectures.

III. Baseline Accelerator Framework

Here we provide a brief overview of the compiler and

baseline architecture. Our focus is the memory disambiguation

for accelerators and detailing the internals of the previously

proposed spatial accelerators [8], [10], [27] is challenging

within the page limits. We briefly summarize below.

Compiler Support: The accelerator compiler takes a pro-

gram written in a high-level language like C/C++, partitions

the application into two components, the x86 executable

which executes on the CPU and a dataflow graph which

maps onto the CGRA. First, we deploy NEEDLE [18],

which is an accelerator independent compiler pass that auto-

partitions the application, processes LLVM IR and constructs

the offload path. More details in the appendix. We would like

to emphasize the compiler builds on prior work; NACHOS

is only an intermediate step in the compilation process

for handling memory dependencies. Figure 3 provides an

overview of the framework.

In Step 2, we inject NACHOS’s compiler passes that

transforms the offloaded dataflow graph. NACHOS analyzes

the dataflow graph of the offload region and inserts the

requisite memory dependency edges. The offload path itself

is memory fenced to ensure ordering with respect to the

OOO’s path execution. The OOO and CGRA accelerator

are loosely coupled, and all data to and from the CGRA

are passed through the caches and memory. In the baseline

system with an LSQ in Step 2: since the CGRA spatial

dataflow architecture does not have an embedded ordering

unlike instructions in an OOO, the compiler uses explicit

IDs (8 bits; max of 256 memory operations) to specify the

memory ordering (like in TRIPS [40]). Finally, we use a

CGRA mapping pass [5], [7] that schedules the LLVM IR

operations onto the grid of function units and configures

the static network. We generate a hybrid executable which

executes on a CPU and a configuration for the CGRA.

The compiler aggressively localizes data, reducing the need

for memory disambiguation. Where possible the compiler

allocates local scratchpad memory for data used only within

the accelerated program region. Examples of data directly

mapped to the scratchpad are global data accessed only by the

accelerated region and local stack variables. Both OPT-LSQ

and NACHOS only disambiguate non-local data.

Accelerator architecture and Simulation: The accelerator

we deploy is a loosely coupled CGRA with 32×32 homo-

geneous functional units similar in design to Dyser [8].

The accelerator includes its own private cache and is cache

coherent with the host CPU through the shared L2 cache.

Page limit prevents us from providing background on how

CGRAs work (the appendix includes a detailed example).

Briefly, each functional unit in the 32×32 grid maps a single

instruction from the dataflow graph of the offload path. The

data dependencies between the operations are explicitly routed

over a static mesh operand network. NACHOS explicitly adds

dependencies between memory operations, and the CGRA

enforces these dependencies using the same operand network.

The operand network also routes values from the cache at

the edge of the grid to the function units in the grid. As

noted in Step 2(Figure 3) we rely on previously released

software for mapping the LLVM IR of the offload path to

the CGRA and configuring the operand network. We use

a cycle-by-cycle timing model based on recently released

CGRA simulator [38]; the OOO core is modeled in detail

using macsim [17]. The memory hierarchy and the associated

cache coherence is modeled in detail using Ruby [24]. To
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