Protozoa: Adaptive Granularity Cache Coherence:

Hongzhou Zhao+, Arrvindh Shriraman*, Snehasish Kumar+, and Sandhya Dwarkadas+
+Department of Computer Science, University of Rochester
*School of Computing Sciences, Simon Fraser University
{hozhao,sandhya}@cs.rochester.edu and {ashriram,ska124}@sfu.ca

ABSTRACT

State-of-the-art multiprocessor cache hierarchies propagate the use
of a fixed granularity in the cache organization to the design of the
coherence protocol. Unfortunately, the fixed granularity, generally
chosen to match average spatial locality across a range of applica-
tions, not only results in wasted bandwidth to serve an individual
thread’s access needs, but also results in unnecessary coherence traf-
fic for shared data. The additional bandwidth has a direct impact on
both the scalability of parallel applications and overall energy con-
sumption.

In this paper, we present the design of Protozoa, a family of co-
herence protocols that eliminate unnecessary coherence traffic and
match data movement to an application’s spatial locality. Proto-
zoa continues to maintain metadata at a conventional fixed cache
line granularity while 1) supporting variable read and write caching
granularity so that data transfer matches application spatial granu-
larity, 2) invalidating at the granularity of the write miss request so
that readers to disjoint data can co-exist with writers, and 3) poten-
tially supporting multiple non-overlapping writers within the cache
line, thereby avoiding the traditional ping-pong effect of both read-
write and write-write false sharing. Our evaluation demonstrates that
Protozoa consistently reduce miss rate and improve the fraction of
transmitted data that is actually utilized.

1. Introduction

Harnessing the many cores afforded by Moore’s law requires a
simple programming model. The global address-space supported by
shared memory isolates the programmer from many of the hardware-
level issues and frees the programmer from having to coordinate
data movement between threads. Unfortunately, an efficient hard-
ware implementation that satisfies the performance and power con-
straints remains a particular challenge. Prior research has addressed
auxiliary directory overheads [35,36]. A few works have proposed
more streamlined cache coherence protocols [16, 19, 32] that elim-
inate both the traffic and complexity penalty of the coherence con-
trol messages. However, these alternatives present a significant de-
parture from current state-of-the-art directory protocols [6] and in-
troduce specific challenges of their own. A few have even advo-
cated the abandoning of cache coherency in hardware and proposed

*This work was supported in part by National Science Foundation (NSF)
grants CCF-0702505, CNS-0615139, CNS-0834451, CCF-1016902, CCF-
1217920, and CNS-0509270; and by an NSERC Discovery Grant, NSERC
SPG Grant, NSERC CRD Grant, MARCO Gigascale Research Center, and
Canadian Microelectronics Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’13 Tel-Aviv, Israel

Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

scratchpad-based multicores [31] that rely on software [25]. In sup-
port of the position, "Why On-Chip Coherence" [15], we show that
the overheads of cache coherence are not inherent to the model but
are caused by the rigidity of the hardware implementations.

We find that the key impediment to scalability of cache coher-
ent systems is the volume of data moved in the system. Across a
range of applications in two different languages (C/C++ and Java)
and three different programming models (pthreads, openMP, and
Intel TBB) we find that between 68—-82% of the total traffic is ex-
pended in moving data. We define unused data as words in the block
that are fetched into the private cache but are untouched before the
block is evicted. Within the data messages moved in the system we
also identified that there is plenty of unused data (31-87%). Recent
reports from industry [2] show that on-chip networks can contribute
up to 28% of total chip power and can also suffer from contention.
We seek to eliminate unused data movement to mitigate these issues.

The primary cause of the excess data volume is the rigidity of cur-
rent cache hierarchies. State-of-the-art multicore cache hierarchies
typically maintain coherence in coarse-grain (64 bytes) cache block
units, the size of which is uniform and fixed at design time. This also
fixes two important system parameters a) the storage/communica-
tion granularity: the granularity at which storage is managed and
data is moved around and b) the coherence granularity: the granu-
larity at which coherence read/write permissions are acquired from
remote sharers. The mismatch between the applications’ spatial lo-
cality and the storage/communication granularity leads to a large
fraction of unused data being moved around in fixed granularity data
blocks. The mismatch between the applications’ sharing granularity,
synchronization, and coherence granularity leads to false sharing re-
lated performance and bandwidth penalty. We discuss the specifics
in more detail in Section 2.

In this paper, we present Protozoa, a family of coherence pro-
tocols that decouples storage/communication granularity from the
coherence granularity and supports adaptive dynamic per-block ad-
justment of the granularity. Protozoa is built as an extension to the
conventional MESI directory protocol and works with existing di-
rectories that track sharers at coherence granularity. It reduces the
volume of data moved by supporting 1) per-block adjustment of stor-
age/communication granularity so that the data transfer matches ap-
plication spatial granularity and eliminates unused data, 2) adaptive
granularity coherence so that readers to disjoint data in a conven-
tional cache block can co-exist with concurrent writers, and 3) multi-
ple non- overlapping writers within the cache line, thereby avoiding
the traditional ping-pong effect of both read-write and write-write
false sharing.

We constructed the Protozoa protocols in detail and analyzed the
complexity in terms of # of new states introduced, and the extra
transitions that arise from them. Our evaluation demonstrates that
Protozoa consistently reduces application miss rates and improves
the fraction of transmitted data that is actually utilized. We see sig-
nificant reduction in data traffic and network utilization, with a 37%
reduction in traffic at the L1 level. The corresponding reduction in
network dynamic energy is 49% on average (geometric mean). The

adaptive granularity storage/communication support reduces the L1
miss rate by 19% on average and the adaptive granularity coherence
support completely eliminates false sharing, resulting in up to a 99%
reduction (Linear regression) in misses, with an average 36% reduc-
tion. Overall, we see a 4% improvement in performance compared
to MESI since parallelism can hide the latency penalty of the extra
misses.

Scope of Work.

Protozoa draws its inspiration from software-based disciplined
race-free programming models that can dynamically vary the stor-
age/communication granularity [5, 11], as well as from earlier work
on adaptive software-managed DSM systems [18, 26,27, 38] from
the *90s that adapt data communication granularity to match access
behavior. Unlike such systems, Protozoa does not rely on a spe-
cific programming model or software support. Building on existing
MESI directory protocols and coherence directory hardware, Pro-
tozoa targets single-chip multicores, making the blocks more fine-
grained to reduce the overall bandwidth overheads and eliminate
false sharing. Protozoa effectively implements the Single-Writer or
Multiple-Reader (SWMR) invariant [29] at word granularity without
paying word-granularity implementation overheads. Finally, Proto-
zoa enables the integration of adaptive granularity caches [8,23,33]
into multicores; prior art has largely explored them in the context of
single core systems.

The overall paper is organized as follows. Section 2 motivates the
need for adaptive granularity storage/communication and coherence,
discussing the impact on miss rate, false sharing, and data wasted
as the fixed granularity is varied. Section 3 presents the details of
Protozoa-SW and Protozoa-MW, coherence protocols that decouple
storage/communication granularity from the coherence granularity.
We discuss the state machine and the additions to a conventional
MESI protocol. We also present a discussion on the additional races
introduced by Protozoa. Section 4 presents a detailed evaluation of
the system and compares the baseline MESI and the Protozoa family
of protocols on a 16 core system. Finally, we discuss related work
in detail in Section 5.

2. Motivation and Background

With hardware cache coherent systems, the cache block granular-
ity influences many of the system parameters. A block is the funda-
mental unit of data caching and communication, the granularity of
coherence operations, and coherence metadata management. While
using the same granularity for these disparate components in the sys-
tem simplifies the implementation, it imposes fundamental limita-
tions on adaptivity to application behavior, causing inefficiency in
one or more parts of the system. We discuss the impact of fine-grain
(< 8 words) and coarse-grain (>= 8words) cache blocks.

Storage/Communication Granularity.

A cache block is the fundamental unit of space allocation and data
transfer in the memory hierarchy. Since programs access state in
units of variables and data objects, any mismatch between the block
granularity and program access granularity results in unused words
in the block. These unused words increase network bandwidth uti-
lization and dynamic energy consumption. These unused words con-
stitute a dominant overhead even in parallel applications as shown in
Table 1. Used data can be as low as 16% of transferred-data, causing
up to 65% of the overall bandwidth in a conventional cache coher-
ence protocol to be wasted on unused data; while only 19% is spent
in control messages. Finer-granularity cache blocks have fewer un-
used words but impose significant performance penalties by missing
opportunities for spatial prefetching in applications with higher spa-
tial locality. Furthermore, they increase the % of traffic wasted on
coherence control messages.

Coherence Granularity.

This defines the granularity at which the coherence protocol ac-
quires read and/or write permissions. The coherence protocol se-
quences control messages and manipulates processor cache states to
satisfy processor memory references. Given that this is strictly over-
head, coherence protocols seek to reduce processing overhead by ac-
quiring permissions for coarser blocks of data. However, when the
application’s sharing granularity is a few words and multiple threads
read/write concurrently, coarse coherence granularity leads to the
phenomenon of false sharing, where different threads read/write to
distinct parts of a block. False sharing gives rise to two forms of
overhead: a) the invalidation penalty to force a concurrent read-
er/writer to eliminate its current cache copy and b) the bandwidth
penalty to move the block again on subsequent access.

State-of-the-art coherence protocols typically use the same fixed
block size for the storage/communication granularity, coherence gran-
ularity, and metadata granularity. However, each of these system
parameters shows best behavior at different block sizes. As we dis-
cuss below, the challenges are compounded due to the application-
specific nature of the behavior.

2.1 Application Behavior

While applications access data storage in units of variables, ob-
jects, and data fields, cache-based memory hierarchies have moved
data in fixed-granularity chunks known as cache blocks. To study
the influence of the block granularity, we vary the block size from 16
bytes to 128 bytes. We do not present block granularities > 128 bytes
since this leads to a significant drop in cache utilization and increase
in false sharing. We focus on three metrics: Miss rate (MPKI), In-
validations (INV), and USED-Data %. We use applications with
varying sharing patterns written in two different languages (C++ and
Java) and two different programming models (pthreads, openMP).
Table 1 shows the relative change in each of these metrics as we
vary the fixed block granularity. The best block size is chosen as the
one that minimizes MPKI and INV, while maximizing USED-Data
%.

Blackscholes, linear-regression, and string-match show a signif-
icant increase in the % of false sharing when going from 16 to 32
byte blocks. For blackscholes and string-match, the absolute miss
rate does not change much, indicating that false sharing is only a
small part of the overall application. Nevertheless, as the per-thread
working set reduces (with increasing threads), the false sharing com-
ponent may influence performance. With linear regression, the pri-
mary type of sharing is false sharing and it directly impacts perfor-
mance. Bodytrack, cholesky, and h2 experience significant increase
in false sharing at 64 bytes. Bodytrack seems to lack spatial locality
and its miss rate does not decrease with higher block sizes; at 64
bytes only 21% of the total data transferred is useful. With h2 and
cholesky, the coarser block sizes are able to achieve better spatial
prefetching and miss rate drops. kmeans, raytrace, string-match,
and streamcluster do not achieve optimality at a fixed granularity
since they have both high spatial locality read-only data and fine-
grain read-write patterns. Coarser blocks benefit the high-locality
read-only data and there is a significant (>33%) reduction in misses.
mat-mul, tradebeans, word-count, and swaptions all have minimal
inter-thread sharing and have good spatial locality. We find that
coarser block granularities (64 bytes or 128 bytes) exploit the spa-
tial locality and reduce the # of misses. fluidanimate, histogram, and
raytrace have a combination of read-only shared data and read-write
data. Coarser blocks exploit the spatial locality and reduce the # of
misses, but significantly increase the # of invalidations. Apache, wa-
ter, and jbb will benefit from spatial prefetching with larger blocks,
but still experience low data transfer utilization and some read-write
sharing.

Table 1: Application behavior when varying block size for the base-
line MESI protocol (see Section 4 for details).

16—32 32—64 64—128
MPK INV|{MPK INV||[MPK INV | Optimal [USED%

apache 1 LIl LI L 128 37%
barnes | = ||~ I = 32 37%
blackscholes | ~ T ||~ ~ ||~ T 16 26%
bodytrack T ~ ||~ T~ T 16 21%
canneal = 1 ||= ~|l~ = 32 16%
cholesky 13 TV T T * 62%
facesim | T 1l =~ ||~ T 32 80%
fft i} L LIV L] 128 67%
fluidanimate | | T ! ~|| | L] 128 54%
h2 4 (! M| 4 T 59%
histogram 1 IIE] NS T 32 53%
jbb 1 INIE] ~|/ L] 128 26%
kmeans (2 T |V ™MV T * 99%
linreg. ™ ™ NIE] T 16 27%
Iu 1 LlL ~| ~| 128 47%
mat-mul 13 ~ (| ™= = 64 99%
ocean 13 LIl ~||| ~| 128 53%
parkd i} ~ || U U 128 68%
radix U IS T = * 56%
raytrace 13 ~ ||| T ™ * 63%
rev-index 13 ~ ||| ~|l] = 12 64%
streamcluster| | [V ™ML l * 76%
string-match | =~ T ||~ ™|~ ~ * 50%
swaptions 13 4 |1l RIE = 64 64%
tradebeans ~ ~ ||= L= ~ 64 32%
water 13 U L R L] 128 46%
word-count | U ([~|[~| 128 99%
x264 1 Lol e ~ 64 24%

MPK: Misses per kilo-instructions; INV: # of invalidations;

USED%: % of DATA transferred used by applications. T (Increase);
| (Decrease). For MPK and INV metrics, lower is better.

~ < 10% inc., T 10-33% inc., {t > 33% inc. M} > 50% inc.. *: No
application-wide optimal granularity.

Summary.

Overall, we see that the coherence/metadata/storage/communica-
tion granularity rigidity of state-of-the-art coherence protocols re-
sults in unnecessary traffic and reduced performance. While we can
choose a coarse granularity block size for data parallel applications
(e.g., matrix multiplication, histogram, and raytrace), in general,
storage/communication granularity and coherence granularity need
to be independently and carefully regulated per application. Co-
herence granularity needs to be fine-grain enough to eliminate false
sharing overheads. Storage/communication granularity needs to be
coarse enough to exploit spatial locality while not wasting space and
bandwidth. These goals must be accomplished without paying an
up-front fixed cost for fine-granularity coherence metadata.

3. Protozoa: Adaptive Granularity Coherence

Protozoa coherence protocols provide variable granularity coher-
ence that decouples storage/communication granularity from the co-
herence granularity. Protozoa seeks to match the data transfer gran-
ularity between the caches to the spatial locality exhibited by the
applications while taking into consideration the granularity of shar-
ing. Figure 1 illustrates the benefits of tailoring both coherence and
storage/communication granularity using a toy OpenMP program
snippet. The program declares an array of independent counters.
Each counter is incremented by a separate OpenMP thread so that
the program has no data races, showing a typical, albeit naive, ex-
ample of false sharing. A conventional protocol would ping-pong
the entire cache block between the processors even though only a
single word is written by each thread. This results in misses at each
processor caused by the invalidations and wasted bandwidth since

the entire block is transferred even though each processor reads and
writes only one word.

Figure 1 also illustrates the Protozoa coherence protocols pro-
posed in this paper: a) Protozoa-SW supports adaptive granularity
storage/communication but supports only a fixed coherence gran-
ularity. Protozoa-SW transfers and stores only the single counter
word needed by each processor, saving bandwidth on both the write
miss and writebacks. However, since it invalidates at a fixed block
granularity, Core-0’s write of item[0] invalidates Core-1’s item[1],
causing false-sharer induced misses. b) Protozoa-MW supports in-
dependent adaptive granularity selection for both storage/communi-
cation and cache coherence. Like Protozoa-SW, it transfers only the
single counter word needed by each processor on a miss. Addition-
ally, by invalidating at the granularity of the cached data, it allows
Core-0 and Core-1 to cache separate words of the same block for
writing at the same time, eliminating misses and coherence traffic
altogether in this example. As in a conventional directory used with
MESI, Protozoa-SW and Protozoa-MW track sharers at a fixed block
granularity. In the next section, we describe the cache organization
needed to support variable granularity storage/communication.

3.1 Variable-granularity Storage for the L1s

To support variable granularity cache coherence, we need the sup-
port of a cache that can store variable granularity cache blocks. There
have been many proposals in the past that we can leverage, includ-
ing decoupled sector caches [20, 28], word-organized caches [21],
and most recently, Amoeba-cache [12]. We use the Amoeba-cache
design in this paper as a proof-of-concept, but the coherence pro-
tocol support discussed here is applicable and portable to the other
approaches to supporting variable granularity caching as well. We
briefly describe only the details of Amoeba-Cache relevant to the pa-
per and necessary for understanding the coherence protocol support.

T Terminology
T lT‘ ITI IT REGION: Aligned fixed

granularity block (8 words)

Nsets —

S S S)
S S)
VN

Amoeba-block: Sub-block
within REGION.

-—
e, -

Region
Tag

START‘ END
<—— 8 bytes

Amoeba-Block: Variable granularity data block. 4-tuple consisting of block
REGION identifier, START, END range markers, and the data block itself.
T: Indicates tag collocated with the data.

Figure 2: Amoeba Cache Layout [12].

The Amoeba-Cache architecture enables the memory hierarchy
to fetch and allocate space for a variable range of words (a vari-
able granularity cache block) based on the spatial locality of the ap-
plication. The Amoeba-Cache data array holds a collection of var-
ied granularity Amoeba-Blocks that do not overlap. Each Amoeba-
Block is a 4-tuple consisting of <Region Tag, Start, End,
Data-Block> (Figure 2). A Region is an aligned block of mem-
ory of size RMAX bytes. A region is analogous to a fixed-granularity
cache block and is the basic indexing granularity for many coherence
metadata (e.g., MSHRs and Directory). However, it is not the gran-
ularity of storage or communication. On cache misses, the Amoeba-
cache requests a specific region’s Start, End range of words from the
coherence protocol. The boundaries of any Amoeba-Block (Start
and End) always lie within a single region’s boundaries.

The coherence protocol, Protozoa, requires the core-private L1

MESI

Core 0

Listing 1: OpemMP Counter Example

/* Threads=2 and ITER = 1000 =*/
volatile int Item[MAX_THREADS];

0 PUT 3mo

Protozoa-SW
Core 1

e

Core 1 Core 0

/+ Parallel Worker =/
void worker (int index)

Write k

ltem

Writekl j INV
ltem

o

{
for (int 1=0; i<ITER; i++)
Item[index]++;
}
int main()
{ ...,
/* Thread Creation x/
#pragma omp parallel for
for (int 1=0; i<THREADS; i++)
{
worker (1) ;

}

Shared L2 Cache

Shared L2 Cache

Protozoa-MW
Core 0 Core 1

ltem
I
Shared L2 Cache

Figure 1: The impact of storage/communication and coherence granularity. MESI: Baseline block granularity protocol; Fixed granularity
storage/communication and Fixed granularity Coherence; Protozoa-SW: Adaptive granularity storage/communication, but Fixed coherence
granularity. Protozoa-MW: Adaptive granularity storage/communication and coherence granularity.

Private L1
Amoeba Cache

CHECK
mo

07 R[1-3] H R[5

GATHER

Coherence
Protocol

Writeback BLOCK

WRITEBACK

Example Writebacks: Check: Identify overlapping sub-blocks. Gather:
Move relevant sub-blocks to MSHR. Writeback: Processed by protocol as
a single coherence operation.

Figure 3: Amoeba-Cache and Coherence Protocol interaction.

Amoeba-Cache to provide support for variable granularity snoop op-
erations (invalidations and writebacks). Since Protozoa decouples
the coherence granularity from the storage/communication granu-
larity supported by Amoeba-Cache, it gives rise to multi-step snoop
operations. We illustrate this using a writeback example (Figure 3).
Initially, the cache has two variable granularity dirty blocks from the
same REGION, R. One block holds words 1-3 and the other holds
words 5-6. The coherence protocol requests a writeback of words
0—7 to satisfy a remote write request. On the forwarded write-
back request, Amoeba-Cache needs to remove both blocks; however,
this is a multi-step operation. We keep the logical step of a write-
back request separate from the number of blocks that need to be
processed within the Amoeba-Cache. Amoeba-Cache interacts with
the coherence protocol using a 3 step process. In CHECK (0),
Amoeba-Cache identifies the overlapping sub-blocks in the cache.
In GATHER (Q) the data blocks that are involved in the coher-
ence operation are evicted and moved one-at-a-time to the MSHR
entry. The coherence protocol itself is completely oblivious to this
multi-step process and is simply blocked from further actions for
this REGION until the gather step completes. Finally, the protocol

processes the WRITEBACK (9), treating the gathered blocks in
the MSHR as a single writeback.

3.2 Protozoa-SW

In this section, we describe the Protozoa-SW coherence protocol
that leverages Amoeba-Cache to support adaptive granularity stor-
age/communication, while continuing to use fixed granularity cache
coherence. The fixed granularity we adopt for cache coherence is a
REGION (64 bytes). Note that variable granularity Amoeba-Blocks
requested by the Amoeba-Cache never span region boundaries and
Protozoa-SW invokes coherence operations only on blocks within
a region. Protozoa-SW supports read sharing at variable granulari-
ties between the cores; it can also support variable granularity dirty
blocks in the L1 cache. Requests from private Amoeba caches will
reflect spatial locality, as well as the read-write sharing granularity
in multithreaded applications.

Protozoa-SW supports only a single writer per REGION and main-
tains the Single-writer or Multiple-reader invariant at the REGION
granularity, i.e., if there exists at least one writer caching any word
in a REGION, then all sharers of any word in REGION need to be
invalidated. We describe the protocol with a 2-level hierarchy: each
core possesses its own private L1 Amoeba-Cache and shares the L2
cache, with coherence implemented at the L2 cache level.

Directory.

Protozoa-SW can operate with a conventional directory. Proto-
zoa-SW organizes the directory entries at region granularity (64 bytes),
with each directory entry representing the information for all the
sub-blocks in the region cached at the various L1s. For instance,
if Core0 holds sub-block range <0-3> (where A is the base region
address), and Corel holds sub-block range <4-7>, the directory en-
try would be represented as Region@(Core0 and Corel), indicating
that some word in region A is possibly cached at both processors; it
does not represent information about which word is cached by which
processor. Since Protozoa-SW is a single owner protocol, the direc-
tory precisely indicates which processor is caching a sub-block for
writing. We leverage the inclusive shared L2’s tags to implement
an in-cache directory. The directory sharer information is associated
with the fixed-granularity L2 data block.

Operation.
Protozoa-SW uses the same stable states as a conventional direc-

tory protocol at the shared L2; we refer the interested reader to Sec-
tion 3.6 for a discussion on the additional transient states. Table 2
shows the stable states in Protozoa-SW at each private L1 and the
directory at the shared L2. Protozoa supports 2-hop and 4-hop trans-
actions (when a remote core contains dirty data).

Table 2: Cache states in Protozoa-SW

L1 Stable States
M Dirty. No other L1 may hold a sub-block.
E Clean and exclusive.
S Shared. Other L1 can hold overlapping sub-blocks.
I Invalid
Shared L2/Directory Stable States
(0] Atleast one word from REGION dirty in one or more L1s.
M L2 data block dirty, no L1 copies. Need to writeback to mem-
ory.
M/S | L2 datablock dirty, one or more L1 copies. Need to writeback
to memory.
SS | Atleast one word from REGION present in one or more L1s.
I Invalid

Core 0: L1 Core 1: L1
GETX 0:3 \®\INV
Owner State
O @Ci1
Shared L2/Directory
Core 0: L1 Core 1: L1
WBACK

ﬂwner State
[DATA|[O@CO |
Shared L2/Directory

Core-0 issues GETX for words 0-3. Core-1 is an overlapping dirty sharer
caching words 2-6. 0Requestor sends GETX to directory. ORequest is
forwarded to Core 1. 9C0re 1 writes back block including all words whether

overlapping or not. °L2 sets new owner as Core-0 and provides DATA 0-3.
Figure 4: Write miss (GETX) handling in Protozoa-SW.

We use an example (Figure 4) to illustrate the adaptive storage/-
communication granularity of Protozoa-SW while performing co-
herence operations similar to a baseline MESI protocol. Initially,
Core-1 has requested permissions for words 2—6. The shared L2
supplies the data and has marked Core-1 as the owner in the direc-
tory for the entire region. Core-0 makes a write request (GETX)
to the shared L2 for range 0-3. The directory detects that Core-1
is marked as the owner (Owner state) and forwards a downgrade

to Core-1. In @), Core-1 evicts the entire block even though only
words 2— 3 are required. This helps deal with the coherence request
in a single step without having to further segment an existing cache
block. If multiple blocks corresponding to the incoming downgrade
need to be written back, then the cache employs the steps outlined

in Figure 3 to send a single writeback to the directory. O when
the DATA arrives at the directory, directory will update the shared
L2 with the words in the writeback and forward only the requested
words (0-3) to the requestor. Compared to a conventional MESI

protocol, Protozoa-SW has the same control message sequence in-
cluding the sharer being invalidated completely. The DATA message
sizes are reduced to include only the words requested (or cached, in
the case of a writeback) by the core based on the spatial locality and
sharing pattern of the application.

3.3 Add-ons to a conventional MESI protocol

With Protozoa-SW, multiple distinct cache blocks from the same
region can co-exist in the private L1 cache simultaneously, while the
directory tracks sharers at a region granularity. This results in a few
extra messages that are forwarded to the L1 cache and/or directory
compared to a conventional MESI protocol. We discuss some issues
below:

Additional GETXs from Owner.

With conventional MESI protocols, the directory does not expect
write misses from the owner of a block, since it is expected that
owners do not silently evict lines cached previously. In Protozoa-
SW, since the directory and coherence granularity are tracked at
REGION granularity, it is possible for an owner to issue secondary
GETXs. As Figure 5 illustrates, a core holding a sub-block A:1-3
in the REGION could be marked as an O(Owner) at the directory.
Now an additional write miss at this private L1 requests words A:4—
7. The baseline MESI would blindly forward the request back to the
existing owner, resulting in a protocol error. Protozoa-SW requires
an additional check when a request arrives to see if the request is
from the existing owner, and if so, return the requested data.

Multiple Writebacks from Owner.

With conventional MESI protocols, when a writeback is received
the sharer is unset at the directory. With variable granularity stor-
age, however, multiple blocks from the same core could be dirty at
the L1. When one of the blocks is evicted (Figure 5), it shouldn’t
unset the sharer at the directory as there could be other sub-blocks
from the same REGION in the L1. At the time of a writeback, Pro-
tozoa checks the L1 to see if there are any other sub-blocks from
the REGION in the cache, and if so, send back a simple WBACK
message that does not unset the sharer at the directory. When the
final block from the REGION is evicted from the cache (R:0-3 in
the example), it sends a WBACK_LAST message, which informs
the directory that it can now safely stop tracking the sharer.

Core-1 Amoeba L1 Core-1 Amoeba L1
R[1--3 R[1--3 R[6--7]

Wback
 R:6-7

Fixed Shared L2
Tag Data Directory

[RJ0-7]0@Gi]

Fetch R:4-7

Fixed Shared L2
Tag Data Directory

Multiple GETXs Multiple WBACKSs
Figure 5: Multiple L1 operations to sub-blocks in REGION.

Races between GETX/Ss and INVs/Fwd. GETXGs.

We use this race to illustrate how the L1 protocol handles coherence-
related operations in the midst of outstanding misses. Note that a
similar race occurs in the conventional MESI protocol as well [29,
page 152] (due to false sharers), but Protozoa-SW does introduce a
few specific challenges. Figure 6 illustrates one specific race. In

0, Core-0 holds a dirty (M state) block with words 5-7, and is-

sues a read miss (GETS) for words 0—3. In 9, with the GETS
yet to reach the directory, a concurrent write (GETX) appears from

Core-1. Since Core-0 is the owner at the directory (because of the
gray block), the GETX gets forwarded. The challenge is that with
a GETS already outstanding for a sub-block in the region, a rac-
ing forwarded request has arrived for another sub-block in the same
region. The directory activates only one outstanding coherence op-
eration for each REGION and in this case has activated the GETX

already. In ©, the sub-block corresponding to the forwarded inval-
idation is written back to the directory, which supplies Core-1 with
the requisite data 5—7 from the WBACK and 0—4 from the Shared
L2. Finally, the GETS is activated and the directory downgrades
Core-1 to a sharer state before supplying the requisite data 0-3.

@ Core 0: L1 ©) Core 0 : L1
e
GETSO:3\ 0--3 0--3 1\Core1:0--7

Y, Fwd-GETX

Shared L2/Directory

@ Core 0 : L1

Shared L2/Directory

5
=
~ 5
>

Shared L2/Directory

Oo@C1

Shared L2/Directory
Core-0 is the owner of 0—7 holding block 5-7 in M. cCore—O issues an addi-
tional read request 0-3. ORequest 0-3 by Core-0 hasn’t arrived at directory.

Directory forwards Core-1’s GETX 0-7 request to Core-0. OBlocks in 0-7
are gathered at Core-0. Dirty words 5-7 are written back. Directory is owned

by Core-1 after data 0-7 forwarded to core-l.a GETS 0-3 from core-0 is
processed at Directory. Directory downgrades to Shared (sending messages to
Core-1) and supplies 0-3.

Figure 6: Race between GETS and Fwd. GETX (write miss) in
Protozoa-SW.

3.4 Protozoa-MW

Protozoa-MW augments Protozoa-SW to support both adaptive
storage/communication granularity and adaptive coherence granu-
larity. Adaptive granularity blocks in the cache provide an oppor-
tunity to differentiate true sharing from false sharing. On incoming
coherence requests, the storage can determine whether the incoming
range overlaps with any block in the cache (see Figure 3). Protozoa-

writers separately. The key idea that enables Protozoa-MW is a
multiple-owner directory. With MESI or Protozoa-SW, only a sin-
gle writer to a cache block or region can exist at any given time and
the writer is tracked precisely at the directory. With Protozoa-MW,
we relax this constraint. When the directory is in the owner state
in Protozoa-MW, multiple writable sharer copies and/or read-only
sharer copies of non-overlapping sub-blocks could potentially exist.
All such reader/writer sharers are tracked by the directory. When a
sub-block in a REGION is cached for writing, then no other over-
lapping reader/writer sub-blocks can exist at any other cache,
i.e., we maintain the cache coherence invariant effectively at the
word granularity.

Operation.

We illustrate Protozoa-MW operation with an example (Figure 7)
that supports write-write sharing of non-overlapping blocks and elim-
inates false sharing. Protozoa-MW uses a similar strategy to also
support read-write sharing of non-overlapping blocks. Initially, Core-
1 and Core-3 cache dirty non-overlapping sub-blocks. Core-2 caches
a non-overlapping read-only copy. The directory has marked Core-1
and Core-3 as the owners and Core-2 as a sharer. In Part 1: Core-0
experiences a write miss (GETX), which is forwarded to the direc-
tory, requesting words 0-3. The directory forwards an invalidation
or downgrade to all sharers (just as in Protozoa-SW).

Core 0: L1 Core 1: L1 Core 2: L1 Core 3: L1
GETX 0:3
Owner State
C1,C3
Shared L2/Directory
Part 1: Request Forwarding
Core 0: L1 Core 1: L1 Core 2: L1 Core 3: L1
WBAC ACK
Data(4) ACK-S
0--3

Owner State
\ DATA \ [CO,C3] -

Shared L2/D|rectory
Part 2: Response and Directory Update

Core-0 issues GETX for words 0-3. Core-1 is an overlapping dirty sharer.

MW takes advantage of this opportunity to support adaptive gran-
ularity cache coherence. In comparison, Protozoa-SW maintains
coherence at a fixed REGION granularity and all sharers of a re-
gion are invalidated (even non-overlapping sharers). In many cases,

Core-2 is an overlapping read-only sharer. Core-3 is a non-overlapping dirty
sharer. 0Request0r sends GETX to directory. ORequest/invalidate is for-

warded to writers/sharer. ODirty overlapping sharer (Corel) does writeback

Protozoa-SW will result in two non-overlapping sub-blocks invali-
dating each other, resulting in the well-known ping-pong effect (see
OpemMP example in Figure 1). Protozoa-MW supports adaptive
coherence granularity to effectively eliminate the ping-pong effect
of data transfer due to false sharing.

Protozoa-MW requires minimal changes to the protocol itself, re-
quires no additional coherence states (at the directory or the L1),
and uses the same in-cache fixed-granularity directory structure as
MESI or Protozoa-SW, with the exception of tracking readers and

and invalidate. Clean overlapping sharer (Core 2) invalidates and sends ACK.
Non-overlapping dirty sharer (Core 3) continues to be owner and sends ACK-S.

9L2 provides DATA for requested range.
Figure 7: Write miss (GETX) handling in Protozoa-MW.

In part 2, the cache responses vary based on the sub-block overlap.
Since Core-1 contains some of the dirty data (words 2-3) needed
by Core-0, it sends a WBACK (writeback) to the shared L2, which
patches it into the shared cache block. Since the shared L2 is a fixed

granularity cache consisting of REGION-sized blocks, any WBACK
will need to update only a single block. Core-2 as an overlapping
read-sharer invalidates itself and sends back an ACK. Unlike in Proto-
zoa-SW, Core-3 notices that there is no overlap between the dirty
data cached (word 7) and the remote writer (words 0 —3), so it sends
an ACK-S to the directory. ACK-S tells the directory that the inval-
idation is acknowledged, but the core should continue to be marked
as a sharer. Finally, the shared L2 supplies the DATA back to Core-
0. In final state, Core-0 caches words 0-3 for writing while Core-3
caches word 7 for writing.

Directory.

Note that Protozoa-MW uses the same directory structure as MESI
and Protozoa-SW: the sharers are tracked at REGION granularity
with the L2 completely oblivious about what sub-blocks each sharer
holds. While this keeps the system comparable in space overheads
to a conventional MESI, it leads to write misses being unneces-
sarily forwarded to false sharers, which need to send back ACK-S
messages. Figure 7 illustrates this issue. Even though Core-3 is a
non-overlapping sharer, the directory is unaware and probes Core-3.
Note that this additional traffic only occurs at the time of a miss and
once the sub-block is cached (Core 0), no additional messages are
needed or generated. Protozoa-MW does require additional direc-
tory storage to accurately represent readers and writers separately.
If no distinction is made between readers and writers in the meta-
data, a reader would generate unnecessary traffic by being forced to
query other readers in addition to the writers.

3.5 Protozoa-SW+MR

Protozoa-SW supports the single writer invariant per block region
while Protozoa-MW supports potentially multiple concurrent writ-
ers and readers. It is possible to consider an intermediate protocol
realization, Protozoa-SW+MR, that supports multiple readers con-
currently with one writer as long as they are non-overlapping, but
not multiple writers. Protozoa-SW+MR provides interesting trade-
offs under different sharing behaviors. Protozoa-SW+MR will cause
more write misses than Protozoa-MW in the presence of concurrent
writers to the same block. On the other hand, consider the example
in Figure 7. When Core-0 performs the write, Protozoa-SW+MR
will revoke Core-3’s write permission, ensuring subsequent readers
do not need to ping Core-3. In contrast, Protozoa-MW will continue
to track Core-3 as a remote owner and continue to forward a subse-
quent requester to Core-3 since the directory does not keep track of
what words are cached at Core-3, which increases control messages
in some applications (see Section 4).

3.6 Protocol Complexity

Protozoa’s complexity is comparable to well understood 4-hop
MESI directory protocols. The differences arise in new events and
message types as listed in Table 3 (no change to the size of control
metadata is required, which is 8 bytes in the base protocol). For ex-
ample, in Owner (O) state, an additional miss form the owner must
be handled as described in Section 3.3. Our MSHR and cache con-
troller entries are similar to MESI since we index them using the
fixed REGION granularity; the L1 controller also serializes multi-
ple misses on the same REGION. For Protozoa-SW, each directory
entry is identical in size to the baseline MESI protocol. Assuming
a P-bit vector representation of sharers, Protozoa-MW doubles the
size of each directory entry in order to separate readers from writers.
Protozoa-SW+MR, on the other hand, needs only logP additional
bits to uniquely identify the single writer. Figure 8 shows the abbre-
viated L1 state transition diagram; add-ons to MESI are highlighted
in broken lines.

In general, there are two types of requests: requests from the
CPU side, and requests from the coherence side. Since Protozoa

LD/ST §/\ Multiple
misse Transient Blocks

W ()| <CPUB>

o)
2 . o
: g g et
“’ w P
DG / IN\/\/" Mifple
/ WBACK Blocks

Figure 8: L1 State transitions of Protozoa Coherence.

decouples storage/communication granularity from the fixed coher-

ence granularity, a coherence operation may need to process multi-

ple blocks in the same cache set. This situation is similar to the Sun

Niagara’s L2 eviction, which may need to forward invalidations to

4 L1 blocks, since the L1 block size is 16 bytes while the L2 block

size is 64 bytes. If there is only one sub-block cached from a re-

quested region, the behavior is similar to the baseline MESI. When

multiple sub-blocks need to be processed before the coherence op-

eration or cpu-side operation can be handled, the controller moves

into a blocking state until the cache completes its lookup of each

block (see Figure 3). This adds two transient states to handle such

cases — CPU_B handles misses from the CPU side, while COH_B

handles Downgrades and Invalidations from the Coherence side.
Table 3: Additional events and message types in Protozoa

Additional message types

SW | LAST_PUTX

MW | Nonoverlapping_ACK (ACK-S in Figure 7)

Additional cache controller events

SW | L1: LocalDG

L2: PUTXLast, Additional GETS/GETX/UPGRADE

L1: FwdNonlapping

L2: L1Nonlapping/NonlappingLAST, L2LocalDG

MW

Correctness Invariants.

We have tested protozoa extensively with the random tester (1
million accesses) and full system runs. Both Protozoa protocols
build on the widely distributed MESI_.CMP _directory protocol. Cor-
rectness for coherence protocols typically means implementing the
SWMR invariant, which requires that, for a datum of some granular-
ity (typically a cache block), at any given instant, the datum can be
cached for read-write by a single core or cached for read-only op-
erations by zero or more concurrent cores. If we assume that MESI
implements the single-writer or multiple-reader (SWMR) invariant,
then by extension: i) Protozoa mimics MESI’s behavior when only
a fixed block size is predicted, i.e., its transitions precisely match
MEST’s transitions on each event. ii) Like MESI, Protozoa-SW im-
plements the SWMR invariant at the region granularity; when a sin-
gle writer exists for any word to a region (64 bytes), no concurrent
readers can exist., and iii) Protozoa-MW’s state transitions effec-
tively extends the granularity to a word, implementing the SWMR
invariant at a word granularity.

4. Evaluation

We use the SIMICS-based [14] execution-driven simulator with
GEMS [17] for modeling the cache and memory system. We also
substitute the SIMICS emulator with a faster trace-driven emula-
tor (using Pin [13]) to enable longer runs. The applications com-
piled using gcc v4.4.3 and the -O3 optimization flag, and are traced
on a 2x12-core AMD system. We model the cache controller in
detail, including all the transient states and state transitions within
GEMS. The parameters for our baseline system are shown in Ta-
ble 4. All the protocols we evaluate employ the same directory
structure. Since our L2 is shared and inclusive, we implement an

in-cache directory that requires 16 bits to precisely track the sharers.
We evaluate a two-level protocol with private L1s and the shared
L2, the coherence point being the L2. At the L1 level, Protozoa
uses Amoeba-Cache [12] for storing variable granularity blocks. To
determine the granularity of the blocks, we also leverage the PC-
predictor discussed in the Amoeba-cache paper [12]. We evaluate
a wide range of parallel benchmarks, including 7 scientific work-
loads from SPLASH2 [34] using the recommended default inputs,
2 commercial workloads (SPECjbb and Apache) [1], 9 workloads
from PARSEC [3] using simlarge, 2 Java-based workloads (h2 and
tradebeans) from DaCapo [4], 7 workloads from Phoenix [22], and
an implementation of parallel k-D Tree construction [5].

Table 4: System parameters
Cores: 16-way, 3.0 GHz, In order
Amoeba-Cache [12] Private L1: 256 sets, 288B/set, 2 cycles
Shared, Inclusive, Tiled L2 Cache
16 Tiles, 2MB/Tile. 8 way, 14 cycles
Interconnect: 4x4 mesh. 1.5Ghz Clock.
Flit size: 16 bytes. Link latency: 2 cycles.
Main Memory : 300 cycles

Table 5: Benchmarks

Suite Benchmarks
SPLASH2 |barnes, cholesky, fft, lu, ocean, radix, water-
spatial
PARSEC [3] |blackscholes, bodytrack, canneal, facesim,
fluidanimate, x264, raytrace, swaptions,
streamcluster

Phoenix [30] | histogram, kmeans, linear-regression, matrix-
multiply, reverse-index, string-match, word-
count

Commercial |apache, spec-jbb

DaCapo [4] |h2, tradebeans

Denovo [5] |parkd

We compare the following coherence designs: i) MESI, a conven-
tional fixed granularity 4-hop directory-based protocol. The results
presented here assume a 64 byte granularity. ii) Protozoa-SW, which
supports adaptive granularity storage/communication, but fixes the
coherence granularity, supporting only a single writer at a time per
cache line. iii) Protozoa-MW, which supports adaptive granular-
ity storage/communication and adaptive coherence granularity, al-
lowing multiple concurrent readers and disjoint writers per cache
line, and iv) Protozoa-SW+MR, which allows concurrent readers
with a single disjoint writer per cache line. Protozoa-SW, Protozoa-
SW+MR, and Protozoa-MW use the same REGION size (64 bytes),
which defines the granularity at which the directory tracks data and
the maximum granularity of a data block. In Protozoa-SW, it also
represents the coherence granularity.

4.1 Reduction of Traffic and Cache Misses

Protozoa coherence protocols can adapt coherence granularity
to parallel application sharing behavior. Protozoa-SW reduces on-
chip traffic by 26% relative to MESI, while Protozoa-SW+MR and
Protozoa-MW reduce traffic by 34% and 37%, respectively, relative
to MESI. Protozoa-MW is able to eliminate false sharing, reducing
miss rate by up to 99% (linear regression).

Figure 9 shows a breakdown of the total amount of data sent or
received in messages at an L1: Unused DATA are the words within
cache blocks brought in to private L1 caches, but not touched be-
fore the block is evicted or invalidated. Used DATA: is the converse
of unused data. Control: refers to all metadata communication,
including control messages such as invalidations and acknowledg-
ments, and message and data identifiers. In MESI, due to the use

of a fixed coherence and communication/storage granularity, Un-
used DATA accounts for a significant portion of the overall traf-
fic (34%), more than all control messages combined(22%). This
percentage varies greatly across applications (1% for Mat-mul to
65% for Canneal). With support for adaptive granularity storage/-
communication, Protozoa-SW eliminates 81% of Unused DATA and
on average reduces traffic by 26%. Note that this improvement is
more noticeable than even if all control messages were eliminated
from MESI, i.e., a move to incoherent software-based systems with
fixed granularity has a bounded improvement scope compared to a
conventional MESI protocol. In applications with predictably poor
spatial locality, Protozoa-SW almost completely eliminates Unused
DATA (< 5% unused data in blacscholes, bodytrack, canneal, wa-
ter). Only apache, jbb, and tradebeans, with unpredictable access
patterns, have noticeable unused data (15%). Two applications, his-
togram and swaptions, see some rise in relative traffic; both have
very low cache miss rates and raw traffic as shown in Figure 13.
With swaptions, most of the data is read-only and Protozoa-SW ex-
periences additional misses due to smaller granularity reads, increas-
ing both control and data traffic. Used DATA also increases in some
applications (e.g., h2, histogram) compared to MESI. H2 and his-
togram suffer misses primarily due to false sharing. In such cases,
Protozoa-SW, which uses a spatial locality predictor to determine
the block granularity, may increase the # of misses by underfetch-
ing, resulting in more data blocks transferred. Higher data retention
time implies more data classified as useful data, especially when
read and written sub-blocks are evicted together, resulting in higher
counts for useful data that is written back.

Protozoa-SW+MR and Protozoa-MW further reduce data trans-
ferred by allowing fine-grain read-write sharing. Protozoa-SW+MR
shows a similar traffic reduction in most applications. In applica-
tions that exhibit prominent false sharing with multiple readers to
disjoint words in a cache line (but only a single writer at a time),
both Protozoa-MW and Protozoa-SW+MR reduce data transferred
compared to Protozoa-SW by eliminating secondary misses. Com-
pared to Protozoa-SW, they reduces traffic by 29% for h2, 80% for
histogram, and 32% for string-match. One application that shows
the benefits of Protozoa-MW over Protozoa-SW+MR is linear re-
gression, due to the presence of fine-grain write sharing in the appli-
cation. Protozoa-SW+MR is able to reduce traffic by 58% relative
to Protozoa-SW, while Protozoa-MW shows a 99% traffic reduc-
tion. For applications such as linear regression with small working
sets, once the cache is warmed up and the disjoint fine-grain data
blocks are cached for read-write access, the application experiences
no further misses (as illustrated in Figure 1). We can see the cas-
caded benefits of supporting multiple concurrent readers with a sin-
gle writer under Protozoa-SW+MR, and additionally, multiple writ-
ers under Protozoa-MW in applications such as barnes and stream-
cluster, which exhibit both behaviors. In a few cases (e.g., X264),
Protozoa-SW+MR has a larger traffic reduction because earlier evic-
tions actually help the streaming behavior. On average, Protozoa-
MW reduces data traffic by 42% compared to MESI, 15% compared
to Protozoa-SW, and 5% compared to Protozoa-SW+MR. Protozoa-
MW saves 37% of total traffic compared to MESI.

Protozoa-MW does not drastically reduce control traffic. Fig-
ure 10 shows the breakdown of the control traffic in Figure 9. On
average, control traffic in Protozoa-SW is 90% of MESI, while for
Protozoa-SW+MR and Protozoa-MW, the corresponding statistic is
86% and 82%, respectively. Most applications show lower con-
trol traffic under Protozoa-SW, with a few exceptions such as h2,
linear-regression, raytrace, and swaption. Due to its lower miss rate,
Protozoa-SW reduced the data request traffic compared to MESI.
The remaining traffic categories (coherence traffic) are comparable

120% 7%
- g B§§ [D Control B Unused Data B Used Data £275
= 100% =7 7
: U
= 80% |t T T el oy Ly s BT U TH | 1L
>
1
g o0 S 11 W B4+-00E -l Al LT
=~
=
S 4% LT 1 b T L R R s RR R R R iR R R
8
5 20% JOR -l
0%
Q @ H fam ;] N 5 O 2] 3 = B s T > = 3 b o <
S et EEEFES~g2 58" 8328 2B BEEE LY
< —_ = 9 .= Q < R
& 5 8 3§ 35 & = = £ = E 8 & 8 8 B % % 3z E = =

Figure 9: Breakdown of messages received/sent at the L1 (measured in bytes) by information type normalized to the total byte count for the
MESI protocol. Four bars per application from left to right: MESI, Protozoa-SW, Protozoa-SW+MR, Protozoa-MW.

BEACK ENACK

25% ot

*gz52 EREQ EFWD EINV

—

=

z 20%

-}

S 1z

g 15%

£

2 10%

g

T 5%

£

54

< 0%
B M Y 0 0 ¥ E © Q g L 7
T EEsEzsETEC g2 5
NBBSS%“CE = = E

Iu

linea.
matri
ocean
parkd
radix
raytr.
rever,
strea.
strin
swapt
trade
water
wce
x264

Figure 10: Breakdown of control messages (measured in bytes) sent/received at L1 by type, normalized to total data sent/received at L1 for
MESI. Four bars per application from left to right: MESI, Protozoa-SW, Protozoa-SW+MR, and Protozoa-MW.

in Protozoa-SW and MESI. For applications such as histogram and
linear regression, Protozoa-MW reduces directory requests signifi-
cantly by eliminating eviction of blocks by non-conflicting writes.
However, for some applications, the multiple owners and sharers re-
sult in new write requests needing to query every owner and sharer.
Applications such as apache, rev-index, and radix all exhibit many
more invalidation messages (which does not translate to more data
traffic since disjoint data are not invalidated). Since there is little
overlap in cached data, most of these invalidations will result in a
NACK rather than an actual invalidation. Rev_index experiences a
4% to 8% increase in invalidation messages, while more than 65%
of these invalidations trigger a NACK response. Even with these ex-
tra control messages, rev-index still experiences a decrease in over-
all traffic because of fewer misses. In barnes and canneal, Profo-
zoa-SW+MR requires extra control messages compared to Protozoa-
MW. Extra write misses are incurred because the protocol supports
only one concurrent writer. Downgraded non-overlapping writers
also remain as sharers, potentially adding to the number of invalida-
tion messages at the next write miss.

Figure 11 visualizes the sharing behavior of blocks in the Owned
state in Protozoa-MW. Protozoa-MW relies on recording multiple
owners as well as sharers in the Owned state. However, too many
sharers will increase invalidation traffic as discussed above. There
are three applications without directory lookups in the Owned state.
Matrix-multiply and wordcount are embarrassing parallel applica-
tions. Since linear_regression has a small working set, once the
cache is warmed up, the elimination of false sharing by Protozoa-
MW results in no additional misses. For raytrace, most of the direc-
tory entries are owned by a single writer without any fine-grain read-
/write sharing (single-producer, single-consumer sharing pattern).

In contrast, for string-match, more than 90% of the lookups in the
Owned state find more than 1 owners, exhibiting extreme fine-grain
sharing.

’ I 1owner only []1owner+sharers ->1owner‘

80%

60%

40%

20%

Percent of accesses to Dir. State O

Figure 11: Percentage of accesses to blocks in different sharer count
states. Number of owners and sharers is recorded every time a di-
rectory entry in Owned state is accessed.

Protozoa-SW only transfers useful data, freeing space in the LI
for other useful data. Miss rates are reduced by 19% on aver-
age for Protozoa-SW relative to MESI. Protozoa-MW and Protozoa-

SW+MR reduce miss rates by 36% on average relative to MESI by
further eliminating unnecessary evictions caused by false sharing.

Figure 12 shows the block size distribution for each application
using Protozoa-MW (distributions for Protozoa-SW and Protozoa-
SW+MR are similar). Blackscholes, bodytrack, and canneal exhibit
low spatial locality, bringing in a majority of 1-2 word blocks. On
the other hand, applications such as linear regression, matrix multi-
ply, and kmeans bring in a majority of 8-word blocks.

100 m -2 Words 13-4 Words ®m5-6 Words ™ 7-8 Words
B
~ 80
3 |
s
g 60 |
=
—g I
2 B
A i 1 REE
520 & a o
N o
7 I] I= |
%4 0
..... P R T
e L8400 gESI SR EgEEEREESSEE888d
= SEEEESS Z 2752 E8ERzzEESEsTQ
5858858 = E ES E3arfRuwmegsz ¥

Figure 12: Distribution of cache block granularities in L1 caches
(Protozoa-MW).

With smaller block sizes, each set in the L1 cache could cache
more blocks in the space saved from unused words in a larger fixed
granularity block. Protozoa-SW benefits the applications with high
miss rates most: in 10 applications with MPKI > 6 in MESI, Proto-
zoa-SW reduces the miss rate by 35% on average relative to MESI.
Protozoa-SW+MR and Protozoa-MW do even better, reducing miss
rate by 60% on average relative to MESI by reducing traffic due to
false sharing. The effect of Profozoa-MW can be seen clearly on 2
false sharing applications. In histogram and linear-regression, miss
rates are reduced by 71% and 99%, respectively, while Protozoa-SW
is unable to eliminate the misses.

4.2 Performance and Energy

Protozoa Coherence improves overall performance by 4%, and
reduces on-chip network energy by 49%.

Figure 14 shows execution time relative to MESI for the Protozoa
coherence protocols. On average, the impact on execution time is
relatively small at 4%. The Protozoa variants do show a reduction
in execution time by 10%—20% on barnes, blackscholes, and body-
track, by significantly improving the miss rates (Figure 13). Proto-
zoa-MW and Protozoa-SW+MR reduce execution time relative to
MESI for histogram and streamclusters by 5%—8%, due to fewer
misses. Protozoa-SW increases execution time by 17% for linear re-
gression, while the speedup for Protozoa-MW is dramatic at 2.2X.
This application has a small working set but suffers from signif-
icant false sharing, which is the dominant effect on performance.
Protozoa-MW is also able to reduce execution time by 36% relative
to Protozoa-SW+MR by allowing fine-grain write sharing. Due to
apache’s irregular sharing behavior resulting in the Amoeba-Cache
predictor’s inability to perfectly match its spatial locality, Protozoa-
MW shows a 7% increase in execution time for apache.

Protozoa coherence greatly reduces dynamic power consumption
in the interconnect due to the smaller number of messages. Fig-
ure 15 provides a relative measure of dynamic energy consump-
tion in the on-chip interconnect during an application’s execution
by comparing traffic in terms of flits transmitted across all network
hops. On average, Protozoa-SW eliminates 33%, Protozoa-SW+MR

10

OProtozoa-SW B Protozoa-SW+MR H Protozoa-MW

17
1. Ir7

%)
.E 1 1.] —
=
£Zos
==
g 206 H
e
ol
2 E04 ||
=04 1]
Evo.z
F
=
z o
=

apache
barnes
black.
bodyt.
histro.
linea.
stream.
water

Figure 14: Execution time. Baseline: MESI. Only applications with
> 3% change in performance are shown.

eliminates, 38%, Protozoa-MW eliminates 49% of the flit-hops across
all applications.

5. Related Work

Sector caches [10, 28], line distillation [21], and most recently,
Amoeba cache [12], all aim at improving cache utilization and/or
data traffic by only bringing in or keeping used data in the cache
at the time of a miss/eviction. These designs, while not focused
on coherence, provide the opportunity for reduced coherence traffic
using variable granularity coherence.

Excess coherence traffic due to false sharing is a widely studied
problem. Several coherence designs have been proposed to maintain
coherence at a true sharing granularity in order to avoid unnecessary
coherence traffic. Dubnicki and LeBlanc [7] propose to adjust block
size by splitting and merging cache blocks based on reference behav-
ior. The proposal is based on a fixed-granularity cache organization,
focusing on coherence traffic rather than cache utilization, and re-
quires coherence metadata overhead per word not only for reference
bits but also for the split/merge counters. Kadiyala and Bhuyan [9]
propose a protocol to maintain coherence at a subblock level, where
the size of the subblock is dynamically determined by the write span
of an individual processor. Coherence metadata overhead is fixed at
design time and is linear in the maximum number of allowed sub-
blocks per cache block. Minerva [24] is also designed to provide co-
herence at a subblock granularity. Sharing attributes are associated
with each individual word-sized sector within a cache block. Co-
herence metadata costs are therefore linear in the number of words.
A fetch is performed at a granularity of a sub-block, which can be
anywhere from 1 word to the maximum block size, based on the
block’s (and thread’s) access patterns. Coherence relies on a broad-
cast medium to invalidate individual words and to allow individual
words within the sub-block to be fetched from potentially multiple
locations (other caches or main memory). While these approaches
use fine-grain blocks selectively based on false sharing patterns, Pro-
tozoa uses fine-grain blocks both to eliminate false sharing and to
match data-specific spatial locality, without the need for coherence
metadata at the fine-grain level. Denovo [5] enforces coherence at
word granularity and uses self invalidation along with the data-race-
free application semantics to eliminate invalidation traffic and di-
rectory storage requirements. While data is tracked at word granu-
larity, communication is accomplished in bulk for multiple words.
DeNovo, however, requires programmers to adhere to a disciplined
programming model which requires rewriting of applications.

Variable granularity coherence has also been explored in the con-
text of software distributed shared memory. Shasta [26,27] allows

—_
(=)

o]

,,,,,,, OProtozoa-SW...__ M

B Protozoa-SW+MR

B Protozoa-MW

Misses Per Kilo Instructions (MPKI)

4
2 ,,,,,,,,,,,,,,,,,,,,,
0 :

o & v ou e e N s e s s s s e s e e e L o ¢
[P h (ST 2B == =} < = B E 5 < = s 5} |5}
S £ 8 % £ 3 8 5 < 7z = E g g 8 8§ % 3 2 8 E 8% E %G
& 8§ = 8 § 5 € = E = g 8 & & & 2 @ ¥ z 5 = <
Figure 13: Miss rate (in MPKI).
1.2

2 O Protozoa-SW B Protozoa-SW+MR H Protozoa-MW

ER

3 [

(o}

2 08

&~

wn

4%%40.6 1

=

g 047

Z

2

£ 02

g

=

0,,
2 8 ¥4 £ g ¢ g & 2 & ¢ 8 & g 2 g § % L £ 858 5§ £ g 8 8 g 3
S E 8 ¥ g =2 8 5 T 2z & § £ s 8§ §E 8 g s 5 5 s 8 8 9
& 8 5 8 & 35 € w < £ = g 8 & & E & ®w ® 75 B 2 »
Figure 15: Relative measure of dynamic interconnect energy: traffic in terms of number of flit-hops normalized to MESI.

the coherence granularity to vary across different data within an ap-
plication. However, programmers must specify the desired granu-
larity. Adaptive Granularity [18] proposes a system that defaults
to a fixed large granularity (e.g., page), using a buddy-style sys-
tem to split the granularity successively in half when ownership
changes, merging when adjacent ownership is the same. Granular-
ity is thereby decreased when false sharing is detected, and increased
when more spatial locality is expected. However, their proposal does
not explore granularities smaller than a hardware-supported fixed
cache line size.

6. Design Issues

3-hop vs 4-hop.

Our baseline in this paper is a 4-hop MESI protocol, from which
the Protozoa protocols are derived. In the example shown in Fig-
ure 4, we could enable direct forwarding between the CPUs as op-
posed to transferring data through the L2. Both 3-hop MESI and
Protozoa would need to deal with the case when a fwd request can-
not complete at the owner. In MESI, this would occur when a block
in E (Exclusive) is silently dropped (as, for example, in the SGI
Origin-3000). In Protozoa, it could occur because the fwd request
does not overlap, or partially overlap, with the owner (due to false
positives at the directory). One option is to fall back to 4-hop for
such corner cases.

Coherence directory.

In this paper, we implemented an in-cache directory in which the
sharer vector is collocated with the shared cache blocks. Many cur-
rent multicores, however, employ shadow tags that duplicate the L1
tag array to save storage. Implementing shadow tags for Protozoa is
not straightforward since the number of amoeba blocks (and regions)

11

at the L1 varies dynamically based on application spatial locality. A
promising alternative is the use of bloom filter-based [35, 37] co-
herence directories that can summarize the blocks in the cache in a
fixed space. The bloom filter can accommodate the variable number
of cache blocks without significant tuning.

Non-Inclusive Shared Cache.

The Protozoa protocols we described in this paper utilize the in-
clusive shared cache to simplify certain corner cases. For instance,
consider the example in Figure 4. The owner L1 supplies part of the
block (2-3) required by the requestor and the inclusive L2 aware of
the remote owner Core-1’s response picks up the slack and supplies
the remaining words (0—1). If the shared L2 were non-inclusive,
it may not have the missing words (0-1) and would need to request
them from the lower level and combine them with the block obtained
from Core-1 to construct the final response. This situation would not
arise in a conventional protocol that uses a fixed granularity for both
the storage and coherence; if a remote L1 has a cached copy, it will
be able to supply the entire block. In general, while Protozoa may
need to assemble the data from multiple sources (remote L1, lower
level cache), a conventional protocol can always find a single source
capable of supplying the entire cache block.

7. Summary

Recently, many researchers have advocated the elimination of hard-
ware cache coherence from future many-core processor [5,11]. These
works cite poor coherence scalability based on traffic requirements,
poor scaling of metadata storage, and complexity issues. In this pa-
per, we show that the traffic overheads of cache coherence can be
streamlined to reflect true application sharing and utilization. We
propose Protozoa, a family of coherence protocols, that adapts both
storage/communication granularity and coherence granularity to dra-

matically improve overall memory system efficiency. Protozoa ex-
ploits adaptive block sizing to minimize data movement and coher-
ence traffic (37% reduction in traffic at the L1 compared to MESI)
and enables fine-granularity reader-writer sharing, completely elim-
inating false sharing. Protozoa builds on a conventional MESI direc-
tory protocol and re-uses the conventional fixed-granularity in-cache
coherence directory metadata structure.

8.
[1]

(2]
(3]
(4]

[5

—_

(71

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

References
A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore,
M. Xu, M. D. Hill, D. A. Wood, and D. J. Sorin. Simulating a $2m
commercial server on a $2k pc. Computer, 36(2):50-57, 2003.
D. Albonesi, A. Kodi, and V. Stojanovic. NSF Workshop on Emerging
Technologies for Interconnects (WETI), 2012.
C. Bienia. Benchmarking Modern Multiprocessors. In Ph.D. Thesis.
Princeton University, 2011.
S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. of the 21st OOPSLA, 2006.
B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism. In Proc. of the
20th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2011.
P. Conway and B. Hughes. The AMD Opteron Northbridge
Architecture. In IEEE Micro. IEEE Computer Society Press, 2007.
C. Dubnicki and T. J. Leblanc. Adjustable Block Size Coherent
Caches. In Proc. of the 19th Annual Intl. Symp. on Computer
Architecture (ISCA), 1992.
A. Gonzilez, C. Aliagas, and M. Valero. A data cache with multiple
caching strategies tuned to different types of locality. In Proc. of the
ACM Intl. Conf. on Supercomputing, 1995.
M. Kadiyala and L. N. Bhuyan. A dynamic cache sub-block design to
reduce false sharing. In Proc. of the 1995 Intl. Conf. on Computer
Design: VLSI in Computers and Processors, 1995.
R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd Power7: IBM’s
Next-Generation Server Processor. In IEEE Micro Journal, 2010.
J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel.
Cohesion: a hybrid memory model for accelerators. In Proc. of the
37th Intl. Symp. on Computer Architecture (ISCA), 2010.
S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon. Amoeba Cache : Adaptive Blocks for Eliminating Waste
in the Memory Hierarchy. In Proc. of the 45th Intl. Symp. on
Microarchitecture (MICRO), 2012.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proc. of the
2005 ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), 2005.
P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. Computer, 35(2):50-58,
2002.
M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache
coherence is here to stay. Commun. ACM, pages 78-89, 2012.
M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
decoupling performance and correctness. In Proc. of the 30th Intl.
Symp. on Computer Architecture (ISCA). 2003.
M. M. K. Matrtin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. In ACM SIGARCH Computer Architecture News,
Sept. 2005.
D. Park, R. H. Saavedra, and S. Moon. Adaptive Granularity:
Transparent Integration of Fine- and Coarse-Grain Communication. In
Proc. of the 1996 Conf. on Parallel Architectures and Compilation
Techniques (PACT), 1996.
S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian.

12

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

SWEL: hardware cache coherence protocols to map shared data onto
shared caches. In 19th Intl. Conf. on Parallel Architecture and
Compilation Techniques (PACT), 2010.

P. Pujara and A. Aggarwal. Increasing the Cache Efficiency by
Eliminating Noise. In Proc. of the 12th Intl. Symp. on High
Performance Computer Architecture (HPCA), 2006.

M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line Distillation:
Increasing Cache Capacity by Filtering Unused Words in Cache Lines.
In Proc. of the 13th Intl. Symp. on High Performance Computer
Architecture (HPCA), 2007.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and

C. Kozyrakis. Evaluating mapreduce for multi-core and
multiprocessor systems. In Proc. of the 2007 IEEE 13th Intl. Symp. on
High Performance Computer Architecture (HPCA), 2007.

J. B. Rothman and A. J. Smith. The pool of subsectors cache design.
In Proc. of the 13th ACM Intl. Conf. on Supercomputing, 1999.

J. B. Rothman and A. J. Smith. Minerva: An Adaptive Subblock
Coherence Protocol for Improved SMP Performance. In Proc. of the
4th Intl. Symp. on High Performance Computing, 2002.

B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan, J. Fang,
P. Zhang, R. Ronen, and A. Mendelson. Programming model for a
heterogeneous x86 platform. In Proc. of the 2009 Conf. on
Programming Language Design and Implementation (PLDI), 2009.
D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain software
distributed shared memory on smp clusters. In Proc. of the 4th Intl.
Symp. on High-Performance Computer Architecture (HPCA), pages
125-136, Feb. 1998.

D. J. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low
overhead, software-only approach for supporting fine-grain shared
memory. In Proc. of the 7th Symp. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
174-185, Oct. 1996.

A. Seznec. Decoupled sectored caches: conciliating low tag
implementation cost. In Proc. of the 21st Intl. Symp. on Computer
Architecture (ISCA), 1994.

D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. In Synthesis Lectures in Computer
Architecture, Morgan Claypool Publishers, 2011.

J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: modular
mapreduce for shared-memory systems. In Proc. of the second
international workshop on MapReduce and its applications, 2011.

E. Totoni, B. Behzad, S. Ghike, and J. Torrellas. Comparing the power
and performance of Intel’s SCC to state-of-the-art CPUs and GPUs. In
IEEE Intl. Symposium on Performance Analysis of Systems &
Software (ISPASS), 2012.

D. Vantrease, M. Lipasti, and N. Binkert. Atomic Coherence:
Leveraging Nanophotonics to Build Race-Free Cache Coherence
Protocols. In Proc. of the 17th Intl. Symp. on High Performance
Computer Architecture (HPCA), 2011.

A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji.
Adapting cache line size to application behavior. In Proc. of the 13th
ACM Intl. Conf. on Supercomputing (ICS). 1999.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In Proc. of the 22nd annual Intl. Symp. on Computer
architecture (ISCA), 1995.

J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A tagless
coherence directory. In Proc. of the 42nd Intl. Symp. on
Microarchitecture (MICRO), 2009.

H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing
Pattern-based Directory Coherence for Multicore Scalability. In Proc.
of Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2010.

H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan. SPATL:
Honey, I Shrunk the Coherence Directory. In Proc. of Intl. Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011.
Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen, I. Schoinas, M. D.
Hill, and D. A. Wood. Relaxed Consistency and Coherence
Granularity in DSM Systems: A Performance Evaluation. In Proc. of
the 6th ACM Symp. on Principles and Practice of Parallel
Programming (PPoPP), June 1997.

